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ABSTRACT

In this thesis we study the generalisation of Roth’s theorem on three term
arithmetic progressions to arbitrary discrete abelian groups and translation
invariant linear equations. We prove a new structural result concerning sets
of large Fourier coefficients and use this to prove new quantitative bounds on
the size of finite sets which contain only trivial solutions to a given translation
invariant linear equation. In particular, we obtain a quantitative improvement
for Roth’s theorem on three term arithmetic progressions and its analogue
over Fq[t], the ring of polynomials in t with coefficients in a finite field Fq.

We prove arithmetic inverse results for Fq[t] which characterise finite sets A
such that |A+ t · A| / |A| is small. In particular, when |A+ A| � |A| we prove
a quantitatively optimal result, which is the Fq[t]-analogue of the Polynomial
Freiman-Ruzsa conjecture in the integers.

In joint work with Timothy G. F. Jones we prove new sum-product estimates
for finite subsets of Fq[t], and more generally for any local fields, such as Qp.
We give an application of these estimates to exponential sums.
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To Hobbes, who had better things to think about.
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chapter 1

INTRODUCTION

This thesis is concerned with arithmetic combinatorics, which is a field of relatively
recent vintage. It is difficult to define precisely, but can be characterised as the study of
approximate structure in finite subsets of abelian groups (or, more generally, any ring).

In this thesis we prove new quantitative results related to three classical problems
of arithmetic combinatorics: locating three term arithmetic progressions, characterising
those sets A with small doubling constant |A+ A| / |A|, and showing that any finite
set grows under at least one of addition and multiplication (commonly known as the
sum-product phenomenon).

A common thread between our results is the emphasis on studying these problems
over Fq[t], the ring of polynomials in t with coefficients in Fq. The traditional setting
for most problems in arithmetic combinatorics is the integers Z, but their analogues in
F∞p , the infinite-dimensional vector space over Fp, are also increasingly studied. Due to
its rigid additive structure many arguments used for Z are considerably simplified over
F∞p , while most of their salient features are preserved. This also makes F∞p a very useful
setting for exploring the potential of new methods in arithmetic combinatorics. Often,
having proved a result over F∞p , the extension to Z poses purely technical (though still
challenging) difficulties. For a survey of arithmetic combinatorics in F∞p and its relation
to the classical integer problems we refer the reader to the survey by Green [28].

There is a well-known analogy in number theory between Z and Fq[t], and the latter is
often used as an arithmetic model case for the former, although the model is not always
perfect. This is perhaps best exemplified by the fact that Weil solved the Fq[t]-analogue
of the Riemann hypothesis in the 1940s, while the integer version remains intractable.
There has been much interest in problems of additive number theory translated to the
Fq[t]-setting; we mention, for example, the work of Kubota [37] and Liu and Wooley [41]
on Waring’s problem over Fq[t].

It is perhaps surprising, then, that Fq[t] has received comparatively little attention in
arithmetic combinatorics. It is useful both as a way to study the arithmetic combinatorics
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of F∞p which involves behaviour more exotic than simple addition (for example, the ‘shift
map’ which in Fq[t] corresponds to multiplication by t), and also as a model for the
arithmetic combinatorics of Z. We have found that Fq[t] can act as an intermediary
between F∞p and Z, possessing the rigid structure of the former and the rich arithmetic
behaviour of the latter. We hope that this thesis gives some demonstration of its potential.

1.1 Translation invariant equations

1.1.1 Three term arithmetic progressions

How large can a set A ⊂ {1, . . . , N} be while not containing any non-trivial three term
arithmetic progressions; that is, a sequence of the shape a, a+ d, a+ 2d with d 6= 0? This
is one of the core problems of arithmetic combinatorics.

The question was originally inspired by a theorem of van der Waerden [76], one of
the earliest results in Ramsey theory: if the integers are partitioned into finitely many
parts then one of the parts must contain arbitrarily long arithmetic progressions. Erdős
and Turán [21] conjectured that this was true simply because one of the sets in such a
partition must contain a positive proportion of the integers, and that any set of similar
density must also contain arbitrarily long arithmetic progressions.

We will restrict our attention to three term arithmetic progressions, which are the
first non-trivial case. Let R(N) denote the size of the largest subset of {1, . . . , N} that
contains no non-trivial three term arithmetic progression (we will henceforth implicitly
assume that a three term progression is non-trivial), and let r(N) = R(N)N−1. The
problem of estimating r(N) was first considered by Erdős and Turán [21], inspired by the
result of van der Waerden. Their best estimate was that, for any ε > 0, if N is sufficiently
large depending on ε then

r(N) < 3
8 + ε.

The arguments of [21] were based on the trivial inequality R(M +N) ≤ R(M) +R(N),
and explicit calculations of R(N) for small N . For example, since R(8) = 4 it follows that
r(N) ≤ 1/2 + 3/N for all N ≥ 1. As mentioned above, Erdős and Turán conjectured in
[21] that

r(N) = o(1),
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which can be viewed as a quantitatively stronger form of van der Waerden’s theorem for
three term arithmetic progressions. This conjecture was resolved by Roth [50] with an
inspired elaboration of the circle method. Roth’s method was powerful enough to give
the explicit quantitative bound

r(N)� 1
log logN .

There has since been much effort spent on improving this quantitative bound. Since
the original work of Roth [50] other, quite distinct, proofs that r(N) = o(N) have been
given; perhaps most strikingly, Furstenberg [23] gave a proof using ergodic theory. Such
alternative methods have, however, never managed to improve upon the original bound of
Roth; subsequent quantitative improvements have always used the analytic framework
provided by Roth, now commonly referred to as the density increment method.

The idea is simple: if a subset A ⊂ {1, . . . , N} fails to have three term arithmetic
progressions and N is sufficiently large then it must have increased density on some
smaller arithmetic progression P ⊂ {1, . . . , N}. Most crucially the property of containing
no three term arithmetic progressions is preserved under dilations and translations, and
hence we have some M ≤ N and A′ ⊂ {1, . . . ,M} with density strictly larger than the
density of A within {1, . . . , N}. We can now iterate this argument; since the density is
always at most 1, however, we can only perform this argument a bounded number of
times. The only reason we must be forced to halt is if we are working within {1, . . . , N ′}
where N ′ is too small for this argument to be carried out. Backtracking to the original
density α gives an upper bound for α in terms of N as required, provided at each step M
is not too small compared to N .

The quantitative improvements of upper bounds on r(N) since the work of Roth [50]
have all followed this basic strategy, although the details have become quite sophisticated.
It is worth mentioning why such quantitative improvements, above the estimate r(N) =
o(N), are useful. It has long been observed that if one could show that

r(N)� (log logN)1−δ

logN

for some δ > 0 then one would obtain as a corollary that the primes contain infinitely many
three term arithmetic progressions. This already follows from the work of Vinogradov
on the ternary Goldbach problem, but it should be true simply because the primes are
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sufficiently dense, without using any deeper properties of their distribution. Furthermore,
if one could show that

r(N)� 1
(logN)(log logN)2 , (1.1)

say, then by partial summation it follows that if ∑a∈A 1/a diverges then A contains
infinitely many three term arithmetic progressions. This would confirm a conjecture of
Erdős, who also conjectured that the same condition should be sufficient for containing
infinitely many k-term arithmetic progressions for any k ≥ 3.

The first quantitative improvement on the result of Roth came from unpublished work
of Szemerédi, who showed that

r(N)� exp
(
−O

(√
log logN

))
.

It was subsequently observed by Heath-Brown and Szemerédi that the ideas that led to
this bound could be coupled with the large sieve to yield further progress. Heath-Brown
[33] showed that

r(N)� 1
(logN)c

for some absolute constant c > 0, and a more direct approach by Szemerédi [73] showed
explicitly that

r(N)�ε
1

(logN)1/4−ε for all ε > 0.

The next leap forward was achieved by Bourgain [6], who showed that

r(N)�
(

log logN
logN

)1/2

,

which he later improved [9] to

r(N)� (log logN)2

(logN)2/3 .

By building upon the method of Bourgain [9], Sanders [61] obtained the further improve-
ment

r(N)�ε
1

(logN)3/4−ε for all ε > 0.

Soon afterwards, by combining a new probabilistic method of Croot and Sisask [17] with
combinatorial techniques Sanders [60] improved this to

r(N)� (log logN)6

logN .
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This result comes, for the first time, within a whisker of the conjectured upper bound of
(1.1) which would prove the conjecture of Erdős.

In this thesis we will prove the modest improvement

r(N)� (log logN)4

logN ,

which has appeared in [4], and where the record now stands. The significance of this
bound is largely due to the fact that it is proved by quite a different method than that
used by Sanders [60]; it avoids the probabilistic method of Croot and Sisask and instead
operates almost entirely within Fourier space in the tradition of Roth. It is inspired by
recent related work by Bateman and Katz [1] which we will discuss further below.

1.1.2 Generalisations

In this thesis we will widen our scope from the original problem of studying the density of
subsets of {1, . . . , N} without three term arithmetic progressions, to a much more general
class of problems which we are able to tackle via the same method. We first observe that
a three term arithmetic progression is precisely a solution to the equation

x1 + x2 − 2x3 = 0,

with a trivial progression corresponding to a trivial solution where x1 = x2 = x3. With
this observation it is natural to speculate about similar results concerning subsets of
{1, . . . , N} with no such trivial solutions to any linear equation of the shape

c1x1 + · · ·+ csxs = 0 (1.2)

where ci ∈ Z. The case s ≤ 2 is trivial, and hence we shall restrict ourselves to
the case s ≥ 3 and ci 6= 0 for 1 ≤ i ≤ s. It is also extremely important that the
solutions are translation invariant; that is, that if (x1, . . . , xs) is a solution then so too
is (x1 + x, . . . , xs + x). If this condition fails then it is easy to construct sets of positive
density having no solution to (1.2). Translation invariance is equivalent to the condition
that

c1 + · · ·+ cs = 0. (1.3)

With such translation invariance we always have the trivial solutions x1 = · · · = xs, but
when s ≥ 4 there can be other degeneracies within the coefficients that create more trivial
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solutions. A study of such translation invariant equations was carried out by Ruzsa [55].
Following [55] we decompose {1, . . . , s} as I1 t · · · t I`, where for all 1 ≤ j ≤ `

∑
i∈Ij

ci = 0 and
∑
i∈I′

ci 6= 0 if I ′ ( Ij,

and define a solution (x1, . . . , xs) to (1.2) to be trivial if for all 1 ≤ m ≤ ` we have xi = xj

if i, j ∈ Im. Ruzsa referred to the maximum such ` as the genus of the equation (1.2),
and when ` ≥ 2 Ruzsa proved that we can obtain very strong bounds on the analogous
density problem by simple combinatorial arguments. We will make no further mention of
the genus, but we stress that, while our methods are valid for any translation invariant
equation over the integers of the shape (1.2), the methods of Ruzsa deliver far superior
bounds for any such equation with genus larger than 1.

Before going further, we make another immediate generalisation of the problem: the
equation (1.2) makes sense with the variables taken from any abelian group G and the
coefficients taken from R, the endomorphism ring of G (see below for some examples).
We will attempt to tackle this generalisation of the original problem, although always
preserving the crucial translation invariance condition (1.3).

In order to discuss the wide variety of such problems in a cohesive manner we will
use the following definition. Let G be some abelian group and B ⊂ G be a finite subset.
Let R be the endomorphism ring of G and R∗ the multiplicative subgroup of injective
endomorphisms. Let s ≥ 3 and c ∈ (R∗)s satisfy (1.3). The generalised Roth problem
for (G,B, c) asks for the size of the largest A ⊂ B that contains only trivial solutions
to (1.2). We denote the size of this A by Rc(B;G), and let rc(B;G) = Rc(B;G) |B|−1.
The coefficients c will be considered to be fixed, and the implied constants in the bounds
which follow will depend on c (and, of course, also on G, although not on B).

This abstract definition is able to capture a wide variety of interesting problems. We
will now give some examples of the kind of problem that we will consider.

1. WhenG = Z the endomorphism ring isR = Z, and so rc({1, . . . , N};Z) is the density
of the largest subset of {1, . . . , N} without solutions to (1.2), where the coefficients
ci ∈ Z\{0}. For example, the density of the largest subset of {1, . . . , N} without
three term arithmetic progressions, is precisely r(1,1,−2)({1, . . . , N};Z) (which we
denoted by r(N) in the previous section).
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2. When G = Zd the endomorphism ring is R = Md(Z), the ring of d×d matrices with
integer entries. This setting contains many interesting higher-dimensional problems;
for example, the density of the largest subset of {1, . . . , N}2 without right-angled
isosceles triangles is r(c1,c2,c3)({1, . . . , N}2;Z2) where

c1 =
1 0

0 1

 , c2 =
 0 1
−1 0

 , and c3 =
−1 −1

1 −1

 .
3. When G = F∞p the endomorphism ring R is rather large. It certainly contains Fp;

thus, for example, when p ≥ 3 the quantity r(1,1,−2)(Fnp ;F∞p ) is concerned with sets
without three term arithmetic progressions, as in the integer case.

4. There are other interesting endomorphisms of F∞p to consider – for example, the
‘shift’ operator which is equivalent to multiplication by t if we view G as the additive
group of Fp[t]. For example, r(1,t,−1−t)(Fp[t]deg<n;Fp[t]) is the density of the largest
set of polynomials over Fp with degree less than n which contains no non-trivial
solution to

x1 + tx2 = (1 + t)x3.

5. Similarly, we can introduce the Frobenius morphism φ : x 7→ xp and consider sets of
polynomials of degree less than n without solutions to

x1 + tx2 + xp2 = (1 + t)x3 + xp3;

we observe that this equation is indeed translation invariant, and the corresponding
density is r(1,t+φ,−1−t−φ)(Fp[t]deg<n;Fp[t]).

6. Our formulation also includes the problem of bounding the density of subsets of
{1, . . . , N} without k-term arithmetic progressions for k > 3. When k = 4, for
example, this is equivalent to bounding rc({1, . . . , N}2 ∩D;Z2) where

c1 =
1 0

0 0

 , c2 =
−1 0

0 1

 , c3 =
−1 0

0 −2

 , and c4 =
1 0

0 1

 ,
and D is the plane {(x1, x2) ∈ R2 : x1 − x2 = 0}. We observe, however, that
c1 is not injective on Z2; this is not, however, an insurmountable problem. Far
more significant is the fact that the plane D is not closed under dilation by the
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coefficients ci, which is a significant obstacle for the approach given in this thesis.
For longer arithmetic progressions one needs to use tools from the nascent field of
higher order Fourier analysis, as pioneered by Gowers [26] in his groundbreaking
work on Szemerédi’s theorem.

7. Another intriguing problem, considered by Shkredov [67], is that of bounding the
density of subsets of {1, . . . , N}2 without ‘corners’: right-angled triangles whose
sides are parallel to the axes. This is equivalent to bounding rc({1, . . . , N}3∩D′;Z3)
where

c1 =


−1 1 0
−1 −1 0
−2 0 2

 , c2 =


1 0 0
0 1 0
1 0 −1

 , and c3 =


0 −1 0
1 0 0
1 0 −1

 ,

and D′ is the plane {(x1, x2, x3) ∈ R2 : x2−x3 = 0}. In this case, all the coefficients
are indeed injective, but once again the fact that the plane D′ is not closed under
dilation by the coefficients ci prevents the methods outlined in this thesis from
applying to this problem.

When G = Z this problem was first considered by Roth [51], who extended his earlier
method to show that

rc({1, . . . , N};Z)� 1
log logN .

This generalisation was not taken up in the subsequent literature concerning Roth’s
theorem on three term arithmetic progressions, although many of the methods in the
literature are straightforward to generalise. What is less straightforward is obtaining a
bound that improves as s increases. We showed in [3], generalising the bound on r(N)
obtained by Sanders [60], that

rc({1, . . . , N};Z)�
(

(log logN)6

logN

)s−2

.

In this thesis we will generalise our improvement for the traditional case of Roth’s theorem
to obtain the bound

rs,c({1, . . . , N};Z)�
(

(log logN)4

logN

)s−2

. (1.4)
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When s ≥ 6 far greater savings can be made by alternative methods, as shown by Schoen
and Shkredov [66], who showed that

rc({1, . . . , N};Z)� exp
−O

( logN
log logN

)1/6
 when s ≥ 6.

1.1.3 Vector spaces over a finite field

As mentioned above, it is now a well-known heuristic that the finite field setting G = F∞p
is a useful model of the case G = Z, where the finite vector space Fnp corresponds to the
arithmetic progression {1, . . . , N}. In particular, this model is useful because arguments
over Z/NZ often become greatly simplified over Fnp .

This observation was first made in the context of Roth’s theorem by Meshulam [45].
He observed that the density increment argument of Roth runs far more efficiently when
the group has finite characteristic, and showed that

rc(Fnp ;F∞p )� 1
n

when c ∈ F3
p.

Since
∣∣∣Fnp ∣∣∣ = pn this is comparable to a bound of r(N) � 1/ logN in the integer case,

which is still out of reach. This was generalised by Liu and Spencer [39] to

rc(Fnp ;F∞p )� 1
ns−2 when c ∈ Fsp.

Again, Schoen and Shkredov [66] have obtained far superior bounds when s ≥ 6, namely

rc(Fnp ;F∞p )� exp(−O(n1/5)) when c ∈ Fsp.

In a spectacular recent development, the ‘log barrier’ was finally broken for Fnp by Bateman
and Katz [1], who showed that

rc(Fnp ;F∞p )� 1
n1+δ for some absolute δ > 0 when c ∈ F3

p.

1.1.4 Polynomial rings over a finite field

Upon examination of these results a question immediately presents itself: since the
endomorphism ring of F∞p is much larger than Fp can we obtain similar bounds when the
coefficients are endomorphisms more exotic than those generated from simple addition?
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In fact, one can interpret F∞p as the additive group of the polynomial ring Fq[t] = Fq[t],
where q is some power of p and Fq is the finite field of order q. Any endomorphism of the
additive group of the polynomial ring Fq[t] thus corresponds to an endomorphism of F∞p ,
and we are led to the study of Roth’s problem over Fq[t]. Not only is this an interesting
problem in its own right, but it is also a way to study translation invariant equations
over F∞p with the coefficients being quite exotic endomorphisms, and acts as a model for
studying the problem over Z – one that is, in many respects, far more useful than the
conventional F∞p model.

When considering the coefficients of an equation of the shape (1.2) over Fq[t], there are
obvious candidates – namely, coefficients drawn from Fq[t], as each a ∈ Fq[t] generates a
natural endomorphism of Fq[t]. Furthermore, just as the obvious analogue of an arithmetic
progression {1, . . . , N} in F∞p is Fnp , the obvious set to consider in a Roth type problem is
the Fq[t]-arithmetic progression Fq[t]n = {x ∈ Fq[t] : deg x < n}. The study of how large
a subset of Fq[t]n can be while containing only trivial solutions to the equation (1.2), with
the coefficients drawn from Fq[t], is the Fq[t]-analogue of the traditional setting of Roth’s
problem over Z.

Given that Fq[t] has much in common with F∞p one might hope that Meshulam’s
bound can be generalised for this setting. This, sadly, is not achievable. Liu and Spencer
[40] have, however, managed this in the case when all the coefficients have degree 0; that
is, when all the coefficients are from Fq,

rc(Fq[t]n;Fq[t])�
1

ns−2 when c ∈ Fsq.

We observe that the left hand side is equal to rc(Fnq ;F∞q ), and thus this result is a direct
generalisation of Meshulam’s bound for F∞p .

The general problem for arbitrary c ∈ Fq[t]s, allowing the coefficients to have positive
degree, is more difficult. With such coefficients the problem is closer to that over Z than
that over F∞p . This problem was first addressed independently by Liu and Zhao [42] and
the author [3]. Liu and Zhao [42] adapted the method of Bourgain [9] to deliver the bound

rs,c(Fq[t]n;Fq[t])�
(

(log n)2

n

) 2
3 (s−2)(1− s−3

4s−9)
when c ∈ Fq[t]s.

In [3] we similarly adapted the method of Sanders [60] to prove the superior bound

rs,c(Fq[t]n;Fq[t])�
(

(log n)5

n

)s−2

when c ∈ Fq[t]s.
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In [4] we improved this to

rs,c(Fq[t]n;Fq[t])�
(

(log n)2

n

)s−2

when c ∈ Fq[t]s. (1.5)

In this thesis we will prove this bound; indeed, we will present our arguments in some
generality so that we can deduce both the bound (1.4) for the integer problem and also
the bound (1.5) for the Fq[t] setting.

We finally mention one more generalisation. While Fq[t] includes far more endomor-
phisms of F∞p than Fp there are yet more; in particular, there are also those generated
from the Frobenius endomorphism x 7→ xp of Fq[t]. The study of such endomorphisms
leads naturally to Drinfeld modules. We defer the definitions and precise statement of
results to Section 2.2.2. As a demonstration, however, we mention the following simple
corollary of our results. There exists an absolute constant δ > 0 such that if A ⊂ Fq[t]n
has only trivial solutions to the translation invariant equation

x1 + tx2 = (1 + t)x3 + (x3 − x2)p

then
|A| �q

qn

nδ
.

1.1.5 Lower bounds

We conclude our survey of Roth type problems with a brief discussion on the dual problem
of proving lower bounds for the functions rc. This thesis makes no attempt to improve
the lower bounds for r(N) or related quantities, but it is interesting to observe how wide
the divide still is, despite recent quantitative progress, between the best known upper
and lower bounds.

At the time of the paper of Erdős and Turán [21] the best known construction for a set
of integers with no three term arithmetic progressions was the set given by those integers
whose ternary expansion only contains the digits 0 and 2, which leads to the lower bound

r(N)� N log 2/ log 3−1.

This was conjectured by some to be the best possible; or more generally that some bound
of the shape r(N)� N−δ should be achievable, for some absolute constant δ > 0. This
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was shown to be false by Salem and Spencer [58], who showed that

r(N)� exp
(
−O

(
logN

log logN

))
.

This construction was soon after improved by Behrend [2], who gave a lower bound of the
shape

r(N)� exp
(
−O

(√
logN

))
.

Remarkably, almost 70 years later this bound has not been substantially improved, which
has led many to conjecture that this is the correct order of magnitude of r(N). We,
however, would not be surprised if exp(−O

(
(logN)1/3

)
) is closer to the truth; we will

give some justification and other conjectures in Section 2.1.1. A slight improvement has
been obtained by Elkin [19], and an alternative simpler proof was given by Green and
Wolf [32]. More precisely, Behrend’s argument leads to

r(N)� (logN)−1/4 exp
(
−
√

8 log 2 logN
)
,

while Elkin [19] obtains

r(N)� (logN)1/4 exp
(
−
√

8 log 2 logN
)
.

Thus, even an improvement of the constant in the exponential would be a significant
achievement at this time. The only other setting where lower bounds have received
attention is the finite field model Fnp . In this setting the constructions of [58] and [2]
fail, and it may still be the case that r(Fnp) � p−δn for some absolute δ > 0. Lower
bound constructions in this setting rely on finding explicit constructions for small n and
lifting them using the trivial inequality r(Fmnp )� r(Fnp)m. Thus, for example, Edel [18]
constructs a set A ⊂ F480

3 such that A contains no solutions to x+ y + z = 0 and

|A| = 2327
(
273 + 37776

)
≥
(
3480

)0.72485
,

which implies that for large n we have

r(Fn3 )� 3−0.27515n,

which remains the best known lower bound for the problem over Fn3 .
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1.2 Inverse sumset theorems

Another fundamental problem of arithmetic combinatorics is the behaviour of the doubling
constant |A+ A| / |A| where A is a finite set of integers. More precisely, we seek a full
description of sets with a small doubling constant. It is not hard to find sets of integers
with a small doubling constant. It is easy to check, for example, that if A = {1, . . . , N}
then |A+ A| = 2 |A| − 1; moreover, since the doubling constant is preserved under
arbitrary translations and dilations the same equality holds for any arithmetic progression
A = a · {1, . . . , N}+ b (where a, b ∈ Z).

More generally, we define a generalised arithmetic progression of dimension d to be a
set of the shape

A = {a1x1 + · · ·+ adxd + b : 1 ≤ xi ≤ Ni}

for some integers a1, . . . , ad ∈ Z\{0} and N1, . . . , Nd ≥ 1. It is easy to check that if A is
a generalised progression of dimension d then |A+ A| ≤ 2d |A|.

Thus we see that generalised progressions of small dimension provide many examples
of sets which have a small doubling constant. It is possible to go yet further, however. We
observe that if B ⊂ A and |B| ≥ K−1 |A| then |B +B| ≤ |A+ A| ≤ K(|A+ A| / |A|) |B|.
In particular, if A has a small doubling constant then any dense subset also has a small
doubling constant. More generally, we say that B is d-covered by A if there exists a set
X of size |X| ≤ d such that B ⊂ A+X. In such a case we have

|B +B| ≤ |A+ A+X +X| ≤ |X|2 |A+ A| ≤
(
d2 |A+ A|
|A|

|A|
|B|

)
|B| .

Combining our discussion thus far we obtain the following lemma.

Lemma 1.1. Let A be a set which is K-covered by a generalised arithmetic progression
P of dimension O(logK) such that |P | ≤ K |A|. Then |A+ A| ≤ KO(1) |A|.

Our attempts to construct sets with a small doubling constant have been quite
rudimentary so far, and it is natural to speculate whether one can find other, more exotic,
examples. It is one of the most striking results of arithmetic combinatorics that this is
not the case – in other words, one can prove that if A has doubling constant K then
there exists some d(K) such that A is exp(d(K))-covered by a generalised progression
P of dimension d(K) such that |P | ≤ exp(d(K)) |A|. We refer to such a theorem as an
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inverse sumset theorem; qualitatively, such theorems offer a complete characterisation of
sets with a small doubling constant.

The first general such inverse theorem was proved by Freiman [22], who showed that
there exists some such function d(K), although without any explicit bounds. Some time
later Ruzsa [56] reawakened interest in such problems by providing a much simpler proof
with explicit quantitative bounds; namely, d(K)� KO(1). He conjectured that it should
be possible to take d(K)� logK, a conjecture now commonly known as the Polynomial
Freiman-Ruzsa conjecture. The example of a generalised arithmetic progression shows
that this would be the best possible.

It is worth pointing out that Ruzsa’s paper [56] does not, in fact, state an inverse
theorem in the form above. There are several different types of inverse theorem, all of
which say that if |A+ A| / |A| is small then A is ‘close’ in some sense to a small arithmetic
progression. There are, of course, various measures of closeness we could use here. In
this discussion we have chosen the one that we find most natural. Other forms of inverse
theorem are essentially equivalent via simple combinatorial arguments.

Chang [13] later proved the bound

d(K)� K2(logK)3,

and Schoen [64] improved this to the sub-polynomial bound

d(K)� exp(O(
√

logK)).

Using a remarkable new probabilistic method of Croot and Sisask [17], Sanders [62]
achieved, for the first time, poly-logarithmic bounds and showed that

d(K)� (logK)4 log logK.

In a subsequent paper Sanders [63] both simplified his proof and incorporated an argument
of Konyagin to improve this to

d(K)� (logK)3(log logK)O(1),

where the record now stands.
As with Roth’s theorem we may ask the analogous question with Z replaced by F∞p .

In other words, we seek to characterise sets A ⊂ Fnp such that the doubling constant
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|A+ A| / |A| is small. Here, of course, there are plentiful examples when the doubling
constant is 1 – any subspace will do. As above, any set which is efficiently covered by a
relatively small subspace will also have a small doubling constant. As with the integers, one
can show that if A ⊂ Fnp has |A+ A| ≤ K |A| then there is a constant f(K) and a finite
subspace P ≤ F∞p such that A is exp(f(K))-covered by P and |P | ≤ exp(f(K)) |A|. This
was first proved by Ruzsa [57], who also gives a conjecture of Marton that f(K)� logK
should be achievable.

As above, the best known quantitative bounds are proved by Sanders [63], who
established that

f(K)� (logK)3(log logK)O(1).

In fact, Sanders [63] proves a more general result for arbitrary abelian groups of which
the integer and Fnp versions are immediate corollaries. The statement for general abelian
groups, which was first addressed by Green and Ruzsa [30], is a little more technical to
state, and we will not discuss it further; for more details see the paper of Sanders [63].

Instead, we return to our main theme and establish an inverse theorem for Fq[t],
the ring of polynomials over the finite field Fq. A sumset inverse theorem of the type
considered above reduces to the case of F∞p , and so the results above hold. There is,
however, an alternative question – we may instead seek to characterise the finite subsets
of Fq[t] such that the t-doubling constant |A+ t · A| / |A| is small, where Fq[t] is the ring
of polynomials in t with coefficients in Fq.

Aside from being an interesting problem in its own right, such a characterisation has
applications to a variety of other problems in arithmetic combinatorics over Fq[t]. Indeed,
the traditional inverse theorems over Z have many important applications; we mention, in
particular, the connection to the problem of obtaining quantitative bounds for the density
of subsets of {1, . . . , N} with no non-trivial four term arithmetic progressions.

An inverse theorem allows one to pass from a weak hypothesis to a strong structural
conclusion, which is extremely useful for arithmetic applications. When considering the
integers, which are generated by addition, it is sufficient to study the behaviour of the
sumset A + A; if that can be controlled then this leads to a full understanding of the
arithmetic nature of A. In Fq[t], however, addition is only half of the story – to capture
the arithmetic structure of A one needs to understand both how A behaves under addition
and how it interacts with the transcendental t.
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As with Z it is easy to construct sets with a small t-doubling constant by using the
notion of an Fq[t]-generalised arithmetic progression, which is a set of the shape

{a1x1 + · · ·+ adxd + b : deg xi < ni}

for some a1, . . . , ad, b ∈ Fq[t] and integers n1, . . . , nd ≥ 1. By combining the arguments
used for inverse theorems in other settings, especially those in the work of Sanders, with
the rigid arithmetic structure of Fq[t] we are able to prove the following characterisation.

Theorem 1.2. Let A ⊂ Fq[t] and K ≥ 4 be such that |A+ t · A| ≤ K |A| and
|A+ α · A| ≤ K |A| for all α ∈ Fq. There exists a Fq[t]-generalised arithmetic progression
P of dimension h(K) such that A is exp(h(K))-covered by P and |P | ≤ exp(h(K)) |A|
where

h(K)� (logK)3(log logK)5.

Furthermore, if we introduce the additional hypothesis that |A+ A| � |A| then we are
able to prove the best possible quantitative result, which delivers the same quantitative
bound as the Polynomial Freiman-Ruzsa conjecture (under the strong assumption that
|A+ A| / |A| = O(1)).

Theorem 1.3. Let A ⊂ Fq[t] and K ≥ 4 be such that |A+ t · A| ≤ K |A| and
|A+ α · A| ≤ K |A| for all α ∈ Fq. Furthermore, suppose that |A+ A| � |A|. There
exists a Fq[t]-generalised arithmetic progression P of dimension h(K) such that A is
exp(h(K))-covered by P and |P | ≤ exp(h(K)) |A| where

h(K)� logK,

where the implied constant depends on |A+ A| / |A|.

In other words, from a quantitative perspective the difficult part of understanding the
arithmetic structure of subsets of Fq[t] lies entirely with the sumset; we are able to prove
quantitatively optimal results concerning any additional structure of Fq[t] over Fnp .

1.3 The sum-product phenomenon

The third problem of arithmetic combinatorics that we will consider in this thesis is a
manifestation of the sum-product phenomenon. Roughly speaking, this is the idea that no
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set can be both additively and multiplicatively structured at the same time; in particular,
for any ring R and any reasonable finite set A ⊂ R either the sumset A+A or the product
set AA must be almost as large as possible, barring trivial obstacles such as the presence
of zero-divisors.

To be more precise in what follows, we will say that δ is permissible for a collection of
finite sets A if for all ε > 0 there exists a constant Cε > 0 such that for all A ∈ A

max(|A+ A| , |AA|) ≥ Cε |A|1+δ−ε . (1.6)

The sum-product heuristic then says that if A is some reasonable collection of finite
subsets of any ring then 1 is permissible for A; this is clearly the best possible. For
example, such a conjecture is plausible for the collection of all finite subsets of an infinite
field.

This problem was first considered by Erdős and Szemerédi for subsets of R. In [20]
they proved that there exists some absolute constant c > 0 which is permissible for the
collection of finite subsets of R, and conjectured that 1 is permissible. There has been
steady progress on the problem over the real numbers, culminating with Solymosi [72]
who showed that 1/3 is permissible.

It is also reasonable to conjecture that 1 is permissible for finite subsets of C, although
this problem is more subtle. Solymosi [71] showed that 1/4 is permissible, and the
method of Solymosi [72] was generalised by Konyagin and Rudnev [36] to show that 1/3
is permissible for all finite sets of complex numbers.

When one considers subsets of a finite field Fq there is an obvious obstacle to the
sum-product phenomenon; namely, the fact that max(|A+ A| , |AA|) ≤ q, which prevents
(1.6) from holding if |A| is too large as a function of q. If one only considers small subsets
of Fq, however, there are no such trivial obstacles, and hence 1 should be permissible here
also.

This problem was first considered by Bourgain, Katz, and Tao [12], though only
for q prime. They proved the following analogue of the Erdős-Szemerédi result: for all
δ > 0 there exists some c(δ) > 0 which is permissible for all sets A ⊂ Fp such that
pδ < |A| < p1−δ. It is, of course, crucial here that all implicit constants are absolute and
do not depend on p.

When |A| < p1/2 this estimate was made explicit by Garaev [24], who showed that
1/14 is permissible; this was successively improved by Katz and Shen [34] and Bourgain
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and Garaev [10]. The current best known result is due to Rudnev [53] who showed that
1/11 is permissible.

For general finite fields Fq the situation becomes more tangled, as there are more
obstacles to a sum-product result; if A is a subfield of Fq, for example, then clearly both
A + A and AA are as small as possible. Nonetheless, Li and Roche-Newton [38] have
extended the method of Rudnev [53] to show that 1/11 is permissible for all subsets of Fq
that are not ‘too close’ to a subfield.

Another interesting ring is the ring of polynomials over a given field; Croot and Hart
[15] considered the case C[t], and showed that there exists some absolute constant c > 0
which is permissible for all finite sets of monic polynomials in C[t].

Finally, Tao [74] has considered the sum-product problem for arbitrary rings (not
necessarily commutative), although the possibility of zero-divisors makes the theorems
quite technical.

In this thesis we will prove, in joint work with Timothy G. F. Jones, new sum-product
estimates for non-archimedean local fields, which have not thus far been considered in the
sum-product literature. We recall that a non-archimedean local field is a locally compact
topological field F equipped with a non-archimedean absolute value; that is, an absolute
value |·| : F → R such that |x+ y| ≤ max(|x| , |y|) for all x, y ∈ F . A more concrete
definition is that non-archimedean local fields are all finite extensions of Qp for some
prime p and all fields of Laurent series Fq((t−1)) for some finite field Fq.

We will show that for finite subsets of such fields 1/5 is permissible. Since the only
archimedean local fields are R and C this result, combined with the above results of [72]
and [36], implies the following.

Theorem 1.4. Let F be any local field and let ε > 0. For any finite A ⊂ F we have

max(|A+ A| , |AA|)�F,ε |A|6/5−ε .

Of course, since Fq[t] ⊂ Fq((t−1)) we obtain, in particular, the following sum-product
result for Fq[t].

Theorem 1.5. For any ε > 0 and finite A ⊂ Fq[t] we have

max(|A+ A| , |AA|)�q,ε |A|6/5−ε .
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1.4 Technical background and definitions

We conclude by summarising some background material which we will use frequently.

1.4.1 Notation

For any group G and functions f, g : G→ C we write f = O(g) or f � g if there exists
an absolute constant C > 0 such that |f(x)| ≤ C |g(x)| for all x ∈ G. Such a constant
will be, in every instance, explicitly computable, but we often choose to suppress the
constants to make the arguments more readable and transparent. At times the constant
C may depend on other variables, which we indicate with the use of subscripts; thus, for
example, f �s g indicates that the implied constant may depend on the parameter s.

When δ ∈ (0, 1] we write L(δ) = 2 + dlog(1/δ)e. In particular, L(δ) ≥ 2 is an integer
and eL(δ) ≥ δ−1. Whenever we use logarithms we will always implicitly assume that the
argument is sufficiently large to ensure positivity; when the term log logK occurs, for
example, we implicitly assume that K > e.

We write x ≈ y when y ≤ x < 2y.
When B is a finite subset of an abelian group G we say that A ⊂ B has density α,

or that A has density α in B, if α = |A| / |B|. It will sometimes be convenient to use
the normalised counting measure on such a set B, which we will denote by β, so that
β(A) = |A ∩B| / |B|.

1.4.2 Plünnecke-Ruzsa estimates

We will require various results from arithmetic combinatorics in our arguments, and in
general we will state these explicitly as and when they are required. There are, however,
sumset estimates that we will state now and use frequently in what follows. These are
often collectively known as Plünnecke-Ruzsa estimates, and allow one to control higher
order sumsets with a bound on a single sumset.

The first estimates of this type are due to Plünnecke [47]. Ruzsa [54] later both
simplified the proof and proved a more general version (for a comprehensive discussion of
the history and proofs we refer the reader to [25]). Furthermore, a wonderfully simple
proof of Plünnecke’s inequality was recently found by Petridis [46]. The following general
form of such an estimate will suffice for our needs.
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Theorem 1.6 (Plünnecke-Ruzsa estimate). Let A,B1, . . . , Bm be finite subsets of an
abelian group G. If |A+Bi| ≤ Ki |A| for 1 ≤ i ≤ m then

|B1 + · · ·+Bm| ≤ K1 · · ·Km |A| .

Thus, for example, if |A+ A| ≤ K |A| then |nA| ≤ Kn |A| for all n ≥ 1.

1.4.3 Fourier analysis on discrete abelian groups

Chapters 2 and 3 will make heavy use of Fourier analysis on an arbitrary discrete abelian
group G, and we summarise the necessary background here. The standard reference is
Rudin [52], where proofs of all the following facts can be found.

Let G be an abelian group with the discrete topology. A character is a homomorphism
γ : G → C such that |γ(x)| = 1 for all x ∈ G. The set of all characters on G forms an
abelian group Ĝ. There is a natural topology on Ĝ, which is the coarsest topology such
that the map γ 7→ γ(x) is continuous for every x ∈ G. This topology makes Ĝ a compact
group.

As locally compact abelian groups both G and Ĝ have Haar measures – translation
invariant regular measures – which are unique up to a multiplicative constant and defined
on all Borel sets. We normalise these to be the counting measure on G and the probability
measure on Ĝ. We denote the Haar measure on Ĝ by µ.

For any p ≥ 1 we define the Lp norm of a function f : G→ C as

‖f‖p =
(∑

x

|f(x)|p
)1/p

and define the L∞ norm to be supx∈G |f(x)|. By Lp(G) we denote the space of all functions
f : G → C such that ‖f‖p < ∞. Furthermore, if X ⊂ G then by Lp(X) we denote the
space of all functions f ∈ Lp(G) which are supported on X, i.e. f(x) = 0 if x 6∈ X.

For any f ∈ L1(G) we define the Fourier transform f̂ : Ĝ→ C by

f̂(γ) =
∑
x

f(x)γ(−x).

For any f, g : G→ C we have the inner product

〈f, g〉 =
∑
x

f(x)g(x).
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For f, g ∈ L1(G) this satisfies the Parseval formula

〈f, g〉 =
∫
f̂(γ)ĝ(γ) dγ.

For f, g : G→ C we define the convolution as

f ∗ g(x) =
∑
y

f(y)g(x− y)

and have the identity f̂ ∗ g = f̂ · ĝ. We write f (s) for the s-fold convolution of f with
itself.

1.4.4 Polynomial rings

We denote the ring of polynomials with coefficients in some finite field Fq by Fq[t]. When
we use this notation the letter q will always denote the size of the coefficient field Fq and
t the indeterminate.

There are many analogues between Fq[t] and Z; we refer the reader to Rosen [49] for
a thorough discussion. For our purposes, all that we will need is the fact that Fq[t] is a
commutative ring of characteristic p where q = pr. Furthermore, it is equipped with a
valuation map deg : Fq[t]\{0} → N where if x = ∑

0≤n≤N ant
n and aN 6= 0 then deg x = N .

We further set deg 0 = −∞.
By Fq[t]n we denote the finite subgroup of polynomials of degree strictly less than n.

We observe that Fq[t]n is a finite Fq-vector space of size qn. In arithmetic combinatorics
it plays the same role for Fq[t] as {1, . . . , N} does for Z.

Finally, we observe that the dual group F̂q[t] can be identified with the torus group
{∑
n<0

ant
n : an ∈ Fq

}
,

where γ = ∑
n<0 ant

n corresponds to the character on Fq[t] defined by

fγ(x) = exp(2πiTr(res−1(γx))/p)

and res−1 is the residue map which picks out the coefficient of t−1 and Tr : Fq → Fp is
the trace map.
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1.4.5 Other definitions

There are quite a few non-standard definitions that we will employ. These will be defined
before they are used, but we also collect the most important here for ease of reference.

When X,X ′ ⊂ G are finite sets of an abelian group G we say that X ′ is δ-sheltered
by X (or that X δ-shelters X ′) if |(X ′ +X)\X| ≤ δ |X|. If Γ ⊂ Ĝ and X ⊂ G we say
that X has δ-control of Γ if, for all γ ∈ Γ and x ∈ X, we have |1− γ(x)| ≤ δ. For any
f ∈ L1(G) and η ∈ [0, 1] we define the η-spectrum to be

∆η(f) =
{
γ ∈ Ĝ :

∣∣∣f̂(γ)
∣∣∣ ≥ η ‖f‖1

}
.

Furthermore, we define the η-level spectrum to be

∆̃η(f) =
{
γ ∈ Ĝ :

∣∣∣f̂(γ)
∣∣∣ ≈ η ‖f‖1

}
.

We finally flag up some notation which will be used in different ways at different points
in this thesis. Firstly, the use of 〈X〉 where X is some finite subset of a group G. This
notation is used in three quite distinct (though related) ways in this thesis. In Chapter 2
it is used to denote the smallest closed subgroup which contains X. In Chapter 3 it is
used to denote the set {∑

x∈X
εxx : εx ∈ {−1, 0, 1}

}
, (1.7)

while in Chapter 4, when G = Fq[t], it is used to denote the Fq-subspace generated by X.
Which definition is in use will be clear from the context.

Secondly, the notion of covering. In Chapter 4 it will be used in the traditional sense;
thus we say that X is r-covered by Y if there exists a set Z of size at most r such that
X ⊂ Y + Z. In Chapter 3, however, we say that X is r-covered by Y if there exists a set
Z of size at most r such that

X ⊂ Y − Y + 〈Z〉,

with 〈Z〉 used in the sense of (1.7).
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chapter 2

TRANSLATION INVARIANT EQUATIONS

The objects of study in this and the following chapter are translation invariant equations;
more precisely, we will study how dense a subset of a finite structured subset of an
abelian group can be while containing only trivial solutions to a given translation invariant
equation.

We first fix some notation that will hold throughout the following two chapters. We fix
some abelian group G equipped with the discrete topology, and let Ĝ denote its compact
dual group. As usual, we equip G with the counting measure and Ĝ with the Haar
probability measure, which we denote by µ. We let R be the endomorphism ring of G and
let R∗ be the multiplicative subgroup of injective endomorphisms. Finally, if c ∈ Rs then
we say that c is commutative (or that c commutes) if cicj = cjci for all 1 ≤ i ≤ j ≤ s.

Let s ≥ 3 and c = (c1, . . . , cs) ∈ (R∗)s be a commutative s-tuple such that c1+· · ·+cs =
0. For any finite set A we will study the solutions to

c1x1 + · · ·+ csxs = 0 (2.1)

with xi ∈ A. We say that such a solution is trivial if all the xi are identical. Given some
fixed finite set X ⊂ G possessing a certain amount of structure we will study how large
a set A ⊂ X can be if it contains no non-trivial solutions to (2.1). For example, if we
take G = Z with X = {1, . . . , N} and c = (1, 1,−2) then this problem becomes that of
bounding the density of sets of integers which contain no non-trivial three term arithmetic
progressions.

In this chapter we undertake a general study of such problems and give new quantitative
bounds that offer an improvement even in the traditional case G = Z. Our main tool is
Theorem 2.3 which encapsulates an efficient density increment method and the statement
of which is quite general. We postpone the proof of Theorem 2.3 to the following chapter.
In this chapter we will use it as a black box and examine in detail how to apply it to
various cases of interest.

Our results take a particularly strong form when X is a finite subgroup. In particular,
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we will prove the following theorem, which is a quantitative version of the analogue of
Roth’s theorem for Fq[t], the ring of polynomials with coefficients in Fq.

Theorem 2.1. Let A ⊂ Fq[t]N with density α and c ∈ (Fq[t]\{0})s be such that c1 + · · ·+
cs = 0. If A has only trivial solutions to (2.1) then

α�c,s,q

(
(logN)2

N

)s−2

.

In fact, we will prove this theorem while keeping the dependence on c and q explicit.
This upper bound is an improvement of our earlier upper bound ((logN)5)/N)s−2 which
appeared in [3].

The application to cases where X is not a subgroup is more technically involved. We
will prove the following theorem, which is currently the best known quantitative bound
for Roth’s theorem on arithmetic progressions.

Theorem 2.2. Let A ⊂ {1, . . . , N} with density α and c ∈ (Z\{0})s be such that
c1 + · · ·+ cs = 0. If A has only trivial solutions to (2.1) then

α�c,s

(
(log logN)4

logN

)s−2

.

Before delving into the technical framework it is worth emphasising that our methods
have certain limitations in which equations of the shape (2.1) they can handle. The
coefficient tuple c must satisfy three conditions:

1. translation invariance, i.e. c1 + · · ·+ cs = 0,

2. commutativity, i.e. cicj = cjci for 1 ≤ i ≤ j ≤ s, and

3. injectivity, i.e. ci ∈ R∗ for 1 ≤ i ≤ s.

The first condition, translation invariance, is to be expected, and is forced upon us by
the iterative nature of the argument. Indeed, even in the case G = Z it is easy to see that
without translation invariance one can have sets of constant density within {1, . . . , N} for
arbitrarily large N which do not contain any solutions to (2.1). Consider, for example,
the equation x1 + x2 − x3 = 0 and the set of odd numbers.

24



The second condition, commutativity, we hope can be weakened somewhat. It is not
an issue when the endomorphism ring is commutative, as with G = Z, but it becomes a
significant barrier for higher-dimensional settings such as G = Zd.

The final condition, injectivity, we also hope could be weakend; indeed, we believe
that it is possible to adapt our methods to give results of similar strength while allowing
for one of the coefficients to be non-injective, although we have not been able to achieve
this in a rigorous fashion.

Finally, we remark that our methods are limited not only by the properties of the
equation (2.1), but also by the form of the initial set X. Thus, as discussed in the
introduction, we say nothing new about the density of subsets of {1, . . . , N} without
k-term progressions for k > 3 or of subsets of {1, . . . , N}2 without ‘corners’, right-angled
triangles whose sides are parallel to the axes. These problems can be formulated in
terms of a single translation invariant equation of the shape (2.1), but the correspoding
initial sets X are not amenable to our methods – in short because they are not even
approximately closed under dilation by the coefficients ci.

2.1 A general framework

Let A be any finite subset of G and c ∈ Rs for some s ≥ 3. We wish to count solutions to
(2.1), and so we define

Υc(A) = 〈(c1 · A) ∗ · · · ∗ (cs−1 · A), ((−cs) · A)〉.

We observe that Υc(A) is a count of all the solutions to (2.1) with the variables lying
in the set A, including the trivial solutions where all of the variables are identical. The
number of such solutions can be trivially bounded by |A|, however, and hence if A contains
only trivial solutions to (2.1) then we must have Υc(A)� |A|. In particular, a suitable
lower bound on Υc(A) for arbitrary sets A (which will depend on |A| itself) will lead to
an upper bound on the size of sets which have only trivial solutions to (2.1).

In broad strokes, our approach follows the density increment strategy first exploited by
Roth [50]. The strategy is as follows. Suppose that A ⊂ H, where H is some finite subset
of G which has a fair degree of structure. If Υc(A) is small, and in particular smaller than
the expected count |A|s / |H| which would hold if A were randomly distributed throughout
H, then A does not behave randomly and in particular is not equally distributed over
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large subsets of H. In particular, one can find a large subset H ′ ⊂ H, which is also very
structured, and x ∈ G such that

|(A− x) ∩H ′|
|H ′|

≥ (1 + ν) |A ∩H|
|H|

,

for some ν > 0. The key observation is that the number of solutions to (2.1) with the
variables chosen from A is at least the number of solutions with the variables chosen from
(A− x) ∩H ′; this is where the fact that (2.1) is translation invariant is crucial.

We now repeat this argument; hence either Υc((A− x) ∩H ′) is large or there is some
structured H ′′ ⊂ H ′ on which a translate of A has increased density, and so on. Since
the density is always bounded above by 1, however, this iteration must halt after some
bounded number of steps. It halts with some A] ⊂ A − x and a structured subset H]

such that Υc(A]) is at least the expected count
∣∣∣A]∣∣∣s / ∣∣∣H]

∣∣∣. Since A] contains only trivial
solutions to (2.1), if α = |A| / |H|,

∣∣∣A]∣∣∣ ≥ Υc(A])�

∣∣∣A]∣∣∣s
|H]|

≥
∣∣∣H]

∣∣∣s−2
αs−1

∣∣∣A]∣∣∣ .
It follows that α ≤

∣∣∣H]
∣∣∣−(s−2)/(s−1)

, which will give a non-trivial upper bound for the
density of A within H as required, provided

∣∣∣H]
∣∣∣ is not too small.

The strength of the result obtained will thus depend on two parameters – the size of
the density increment ν, which controls how many steps of the iteration are required, and
the relative size of the next structured set, |H ′| / |H|, which is a factor lost in each step of
the iteration. These two factors will give a lower bound for the size of the final structured
set H], and hence an upper bound for α.

Of course, to turn this idea into a rigorous argument we need to make precise what
kind of structured subset is required to run the argument. In particular, it needs to
be structured enough to be able to carry out the argument, but not so structured that
we cannot find a relatively large similarly structured subset for the next stage. The
subtlety therefore lies in carrying out the argument with the bare minimum of structural
requirements.

The structural requirements can be roughly summarised by the necessity of being able
to study solutions to (2.1) locally within H, which implies that H must be mostly closed
under addition and dilations by the coefficients c. To insist that H be itself closed under
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such operations is far too restrictive for our applications; it turns out that it suffices for
H to have enough subsets which do not ‘escape’ too far from it under these operations.
To show more precisely what we mean, we recall the following crucial definition, which
will be used extensively in the definitions to follow: we say that X ′ is δ-sheltered by X if

|(X +X ′)\X| ≤ δ |X| .

Given that H is structured enough for us to be able to locally study solutions to (2.1),
we also need to know what kind of subset H ′ ⊂ H we must pass to to be able to obtain
the requisite density increment. We shall see in Chapter 3 that the important property is
that H ′ is suitably controlled on some finite subset of Ĝ – we recall that X has δ-control
of Γ if |1− γ(x)| ≤ δ for all x ∈ X and γ ∈ Γ.

We now state precisely the kind of structures that our method requires to produce a
density increment, and that are produced at the next stage. These definitions are to a
certain degree quite artificial, as they package together the various technical hypotheses
that will be required in the proof of our main theorem. The core idea is quite natural,
however – given a set X we will pass to a subset X ′ which is both sheltered by X and is
also well controlled on some bounded number of characters.

Let X ⊂ G be a finite set, δ ∈ [0, 1] and c ∈ Rs. Furthermore, let (B̃, B̃′) be a pair of
finite symmetric subsets of G, each containing 0. We call such a pair good for (X, c; δ) if

1. the sets c1 · B̃, cs · B̃ and c1cs · B̃′ are all δ-sheltered by X, and

2. c2 · B̃′ + · · ·+ cs−1 · B̃′ is δ-sheltered by B̃.

Let B be a collection of finite symmetric subsets of G, each containing 0 and C ≥ 1.
We say that B is permissible for (X, c; δ, d) if there exists a good pair for (X, c; δ), say
(B̃, B̃′), such that

1. c1 · B̃, cs · B̃, and c1cs · B̃′ are all members of B, and

2. for each finite Γ ⊂ Ĝ of size at most d and each 1 < i < s the collection B contains
c1csci ·X ′ for some X ′ ⊂ B̃′ which has (4 |Γ|)−1-control of Γ and is δ-sheltered by
B̃′.
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A chain from X of length K, denoted by X = (X0, . . . ,XK), is a sequence of collections
of finite symmetric subsets of G, where X0 = {X} and Xi+1 ⊂ ∪X∈XiP(X). By X ∈ X

we mean that there exists some 0 ≤ i ≤ K such that X ∈ Xi.
Finally, let δ ∈ [0, 1] and d : N → R+. We say that a chain X0, . . . ,XK satisfies

DI(δ, d; c) if, for i ≥ 1 and every X ′ ∈ Xi−1, the collection Xi+1 contains some collection
permissible for (X ′, c; δ, d(i)). This property, with an appropriate choice for δ and d,
encapsulates precisely the necessary hypotheses to allow the previously outlined density
increment argument to succeed; thus, at the ith stage of the argument, we will be working
within some X ′ ∈ Xi, and we will show that A has increased density on some X ′′ ∈ Xi+1.

Another abstraction of the kind of set system required to run a density increment
argument is the notion of a ‘Bourgain system’ outlined by Green and Sanders [31]. This
concept, however, lies in a somewhat orthogonal direction; roughly speaking, a Bourgain
system is a source for sets with which to create the next link of a chain that satisfies
DI(δ; r; c) for some suitable parameters δ and r.

We are finally ready to state our main theorem concerning translation invariant
equations, which will be proved in Chapter 3. We recall that a trivial solution to (2.1) is
one where x1 = · · · = xs.

Theorem 2.3. There exists a constant C(s) > 1, depending only on s, such that the
following holds. Let c ∈ (R∗)s be a commutative s-tuple such that c1 + · · ·+ cs = 0. Let
X ⊂ G be a finite symmetric set and A ⊂ X with density α. Let

δ = exp(−CL(α)2) and r(i) = C(1 + C−1)−i/(s−2)α−1/(s−2)L(α) for i ≥ 0.

If A contains only trivial solutions to (2.1) then there exists an integer 0 ≤ K �s L(α)
such that if X is a chain from X of length K which satisfies DI(δ, r; c) then there exists
X ′ ∈ X such that

|X ′|−1 � α2. (2.2)

The appearance of α2 may give the impression that bounds of the strength α� |X|−1/2

can follow from an application of Theorem 2.3. This is misleading, however – passing
from one link in the chain to the next will always incur a substantial loss in the size of
|X ′|, which will depend on α, and hence it is the size of |X ′| / |X| which will dominate in
(2.2).
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We remind the reader that Theorem 2.3 is valid for any abelian group G with
endomorphism ring R. For it to have a non-trivial conclusion, however, we need to be
able to control the cardinality of the sets making up each link in a chain – this is a tricky
matter, and places strict demands on the structure of the original set X. In the rest of
this chapter we discuss this matter in some detail. As one might expect, it is far simpler
when X is a finite subgroup of G, largely due to the fact that subgroups completely
shelter all of their subsets.

2.1.1 Conjectures and comparison with previous results

Theorem 2.3 may be viewed as a packaging of the density increment argument, as carried
out in full generality, without specialising it to any particular special cases such as the
integers. Many of the previous methods used for Roth-type theorems can be reinterpreted
in this fashion. There are three important quantitative parameters: K, δ, and d.

The parameter K essentially measures how many times we can run the density
increment argument before we must halt due to the trivial bound α ≤ 1; thus if at each
stage we can pass from a set of density α to a set of density (1 + Ω(1))α then K ≈ L(α).
On the other hand, if we can only achieve a density increment of α 7→ (1 + Ω(α))α then
K ≈ α−1.

The parameter δ measures how much shelter is required at each stage; essentially,
how additively closed our approximately structured sets must be in order to have enough
structure for the kind of relative ‘local’ Fourier analysis we will perform at each step.

Finally, the function d is how many characters we need to control at each step. That
is, to find set X ′ ⊂ X on which A has increased density, we take some subset of X which
is sufficiently closed under addition and then passing to a subset on which roughly d
characters are trivial.

We first consider the consequences of Theorem 2.3 for the classical problem of bounding
the density of subsets of {1, . . . , N} without three term arithmetic progressions. By
constructing suitable chains explicitly for this setting, as we will do in Section 2.2, one
can show that if Theorem 2.3 holds with parameters K(α), δ(α) and d(i) = d(i;α) then,
whenever A ⊂ {1, . . . , N}, with |A| = αN , has no three term arithmetic progressions we
have

L(δ)
K∑
i=0

(K − i)d(i)� logN.
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For example, the bounds

K � L(α), δ � exp(−O(L(α)2) and d(i)� ciα−1L(α) for some c < 1

of Theorem 2.3 lead to the bound

α� (log logN)4

logN .

We summarise below how some previous work, when reinterpreted in this manner,
compares to the bounds in Theorem 2.3 (we omit mention of absolute multiplicative
constants in the table below; the constant 0 < c < 1 denotes some fixed quantity).

A notable omission from the table below are the results of Bourgain [9] and Sanders
[61], which give the bounds α � (logN)−2/3+o(1) and α � (logN)−3/4+o(1) respectively.
While these methods fall very much within the density increment framework, they use
a delicate case analysis which is not easy to interpret in the framework of Theorem 2.3.
We further remark that we credit both Roth [50] and Bourgain [6] for the same approach
since the core mechanism of achieving that kind of density increment was already present
in Roth [50]; the achievement of Bourgain was to refine the technical machinery to most
efficiently exploit that density increment, refinements which we will make full use of in
the next chapter. Similarly, the first row credits Heath-Brown [33], Szemerédi [73] and
Chang [13] since the described density increment can be obtained by combining the ideas
present in those papers, although this approach and the stated bound on α have not been
published.

Similarly, one may construct explicit chains for Fnp in such a manner as to show that if
Theorem 2.3 holds with parameters K(α), δ(α) and d(i) = d(i;α) then, whenever A ⊂ Fnp ,
with |A| = αFnp , has no three term arithmetic progressions we have

K∑
i=0

d(i)�p n.

We observe in particular that there is no longer any dependence on δ (essentially because
δ was the parameter which controlled how sheltered subsets were, and a subspace in Fnp is
closed under addition and hence automatically shelters all its subsets completely). For a
similar reason, a factor of K has also been lost.

As above, we can interpret some existing results in this fashion.
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Method of K δ d(i) α�

Heath-Brown [33]
Szemerédi [73]
Chang [13]

L(α) αO(1) ciα−2L(α) (log logN)3/2

(logN)1/2

Roth [50]
Bourgain [9] α−1 αO(1) 1 (log logN)1/2

(logN)1/2

Sanders [60] L(α) αO(1) ciα−1L(α)4 (log logN)6

logN

Theorem 2.3 L(α) exp(−O(L(α)2)) ciα−1L(α) (log logN)4

logN

Table 2.1: Density increment results over {1, . . . , N}

K d(i) α�

Meshulam [45] α−1 1 1/n

Sanders [60] L(α) ciα−1L(α)4 (log n)4/n

Bateman and Katz [1] α−c 1 1/n1/c

Theorem 2.3 L(α) ciα−1L(α) log n/n

Table 2.2: Density increment results over Fnp

We recall that c denotes some fixed quantity 0 < c < 1, and hence the result of
Bateman and Katz is the strongest.

It is an interesting question to ask how strong a density increment theorem such as
Theorem 2.3 could be; any improvement in the parameters K, d, or δ would immediately
yield quantitative progress in problems such as Roth’s theorem. In Table 2.3 we make
three possible conjectures as to where the truth lies, and the consequences for three
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different Roth-type problems.

‘One large character;
α-shelter’
conjecture

‘One large character;
constant shelter’

conjecture

‘Many large
characters; α-shelter’

conjecture

K L(α) L(α) 1

δ αO(1) 1 αO(1)

d(i) 1 1 L(α)

A ⊂ {1, . . . , N}
x+ y = 2z
solution free

α�

exp(−O((logN)1/3)) exp(−O((logN)1/2)) exp(−O((logN)1/2))

A ⊂ Fq[t]deg<n
x+ ty = (1 + t)z
solution free

α�

exp(−O(n1/2)) exp(−O(n1/2)) q−cn

A ⊂ Fnp
x+ y = 2z
solution free

α�

p−cn p−cn p−cn

Table 2.3: Possible conjectures for the best-possible density increment approach

The first is the situation where, if A had solutions to the given equation, then there is
a character γ ∈ Ĝ such that

∣∣∣Â(γ)
∣∣∣� α, and that the surrounding machinery would need

a degree of additive shelter comparable to α to be successfully carried out.
The second is the situation where, as before, there exists some large character, but

also that only some constant degree of shelter would be required. We believe that this is
too ambitious, however; roughly speaking, having δ ≈ α ensures that, when performing
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the density increment argument relative to some A ⊂ X, we are passing to some

|(X ′ +X)\X| ≤ |A| /100,

say, and hence when considering elements of ((X ′ ∩ A) + A) ∩ (−2 · A) (say, which is
roughly what is considered when counting three term arithmetic progressions) only a
small fraction lies outside the set X, where our methods cannot reach it (since all our
arguments are performed relative to X). Thus imposing a shelter parameter of δ ≈ α

seems quite natural.
If one could only have a constant shelter parameter, then for reasonably sparse sets A

it is possible that all of ((X ′ ∩A) +A) ∩ (−2 ·A) lies outside X which would destroy any
hope of an argument using techniques relative to X succeeding.

Finally, the third possibility is that, as before, some degree of shelter comparable to α
is necessary, but that there exists not just one large character, but almost as many as
possible, roughly α−3.

We believe that the first conjecture is the most plausible, and hence the correct bound
for Roth’s theorem over the integers is of the shape exp(−(logN)1/3), rather than the
Behrend-type bound exp(−(logN)1/2). The model setting of Fq[t] suggests a way to
determine where the truth lies, by examining in detail whether it is possible to achieve a
lower bound of Behrend-type strength for this problem.

2.2 Strong structure

In this section we address the situation when X is a finite subgroup of G. Although our
arguments are valid for any abelian group G they are only of interest when G has many
such finite subgroups. When G = Z, for example, the only finite subgroup is {0}, and we
understand subsets of this group well enough without recourse to the arguments in this
section.

If X ⊂ G then we define

[X] =
{
γ ∈ Ĝ : γ(x) = 1 for all x ∈ X

}
,

and if Γ ⊂ Ĝ then
JΓK = {x ∈ G : γ(x) = 1 for all γ ∈ Γ} .
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We observe that by continuity of the characters [X] is a closed (and, in particular,
measurable) subset of Ĝ. We first record some basic properties of the operators [·] and
J·K. In this chapter 〈X〉 denotes the subgroup of G generated by X, and similarly 〈Γ〉
denotes the closed subgroup of Ĝ generated by Γ ⊂ Ĝ.

These constructions are known as annihilators, and the following basic facts can be
generalised to arbitrary locally compact abelian groups; we refer the reader to Chapter 2
of Rudin [52] for more details.

Lemma 2.4. Let Γ ⊂ Ĝ and X ⊂ G. We have the following properties:

1. if Γ′ ⊂ Γ then JΓ′K ⊃ JΓK,

2. if X ′ ⊂ X then [X ′] ⊃ [X],

3. J[X]K ⊃ X and [JΓK] ⊃ Γ,

4. JΓK = J〈Γ〉K and [X] = [〈X〉],

5. if X ≤ G is a finite subgroup then [X] is a subgroup of Ĝ and µ([X]) = |X|−1,

6. if X ≤ G is a finite subgroup then X = J[X]K,

7. if Γ ⊂ Ĝ has positive measure then JΓK is a finite subgroup of G of size µ(〈Γ〉)−1.

Proof. The first three properties follow immediately from the definitions. By property 3
it follows that [JΓK] is a closed subgroup of Ĝ which contains Γ and hence [JΓK] ⊃ 〈Γ〉 ⊃ Γ.
By the first three properties it follows that

JΓK ⊂ J[JΓK]K ⊂ J〈Γ〉K ⊂ JΓK ,

so that JΓK = J〈Γ〉K. The argument for [X] = [〈X〉] is similar, which proves property 4.
Let X ≤ G be a finite subgroup. Since X is closed under addition it is easy to check

that if γ 6∈ [X] then X̂(γ) = 0, and if γ ∈ [X] then X̂(γ) = |X|, and hence by Parseval’s
identity,

|X| =
∫
γ

∣∣∣X̂(γ)
∣∣∣2 dγ =

∫
γ∈[X]

∣∣∣X̂(γ)
∣∣∣2 dγ = µ([X]) |X|2 ,

and property 5 follows. We verify property 7 in a similar fashion. Let Γ ⊂ Ĝ with positive
measure. We observe as above that ĴΓK(γ) = |JΓK| for all γ ∈ Γ. Furthermore, if γ 6∈ 〈Γ〉
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then there exists some x ∈ JΓK such that γ(x) 6= 1 and hence ĴΓK(γ) = 0. It follows that

|X| =
∫ ∣∣∣ĴΓK(γ)

∣∣∣2 dγ =
∫
〈Γ〉

∣∣∣ĴΓK(γ)
∣∣∣2 dγ ≥ µ(Γ) |JΓK|2 ,

and property 7 follows.
It remains to prove property 6. As above, since J[X]K is a subgroup which contains X

we have 〈X〉 ⊂ J[X]K. Furthermore, by property 7 we know that J[X]K is a finite subgroup.
It is thus sufficient to show that

|J[X]K| = µ([J[X]K])−1 ≤ |〈X〉| = µ([X])−1,

which follows from property 3. This proves property 6.

We recall that the left action of R on G induces a right action of R on Ĝ, defined by
(γc)(x) = γ(cx) for any γ ∈ Ĝ and x ∈ G.

Lemma 2.5. Let Λ0,Λ ⊂ Ĝ and c ∈ R. If Λ0 · c ⊂ Λ then c · JΛK ⊂ JΛ0K.

Proof. We need to show that for all γ ∈ Λ0 and all y ∈ c·JΛK we have γ(y) = 1. Unpacking
the definitions, this is simply saying that if λ(z) = 1 for all λ ∈ Λ then γ(cz) = (γc)(z) = 1,
which follows since γc ∈ Λ0 · c ⊂ Λ.

We will now use the operators [·] and J·K to present an explicit construction for a
permissible collection for any finite subgroup. As mentioned above, because a finite
subgroup completely shelters all of its subsets we are able to construct a permissible
collection with the shelter parameter δ = 0.

Lemma 2.6. Suppose that c ∈ (R∗)s is a commutative s-tuple. Let X = a · JΛK ≤ G be a
finite subgroup where a ∈ R∗ commutes with c, and let B be the collection of all finite
subgroups of the form a′ · J(Λ · T ) ∪ Γ)K for some a′ ∈ R∗ which commutes with c, finite
set Γ ⊂ Ĝ of size |Γ| ≤ d and T ⊂ {c1, . . . , cs}2. Then B is permissible for (X, c; 0, d).

Proof. We shall first construct a good pair for (X, c; 0). Since X is a subgroup it suffices
to find a pair (B̃, B̃′) of finite subgroups of G such that c1 · B̃, cs · B̃, c1cs · B̃′ ⊂ X and
ci · B̃′ ⊂ B̃ for 1 < i < s. Let

B̃ = a · JΛ · {c1, cs}K ,
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so that c1 · B̃, cs · B̃ ⊂ X by Lemma 2.5. Similarly, let

B̃′ = a · JΛ · {c1, cs} · {c2, . . . , cs−1} ∪ Λ · c1csK .

It follows that c1cs · B̃′ ⊂ X. Furthermore, we also have by Lemma 2.5 that ci · B̃′ ⊂ B̃ for
1 < i < s. This proves that (B̃, B̃′) is a good pair for (X, c; 0). For B to be permissible
we first require that it contain the subgroups c1 · B̃, cs · B̃ and c1cs · B̃′. For this it suffices
to note that

c1 · B̃ = c1a · JΛ · {c1, cs}K ∈ B,

for example. Furthermore, for each finite Γ ⊂ Ĝ of size at most C and 1 < i < s we
require B to contain c1csci ·X ′ where X ′ is some subgroup of B̃′ with control of Γ. For
this it suffices to take

X ′ = a · JΛ · {c1, cs} · {c2, . . . , cs−1} ∪ Λ · c1cs ∪ Γ · aK .

This construction can be iterated to give an explicit construction of chain from X

with the DI(0, d(i); c) property, where

d(i) = C(1 + C)−i/(s−2)α−1/(s−2)L(α).

Namely, we let X0 = {X} and for j > 0 every member of Xj is of the shape a · JΛjK for
some a ∈ R∗ which commutes with c and some

Λj ⊂

Λ ∪
j⋃
i=1

Γi

 · {1, c1, . . . , cs}2j

for some finite sets Γi ⊂ Ĝ such that |Γi| ≤ d(i) for 1 ≤ i ≤ j. Lemma 2.6 ensures that
for every X ∈ Xi−1 the link Xi contains some collection of sets which is permissible for
(X, c; 0, d(i)) as required. Summing the geometric series we can include all such Γi in a
single finite Γ ⊂ Ĝ of size OC(α−1/(s−2)L(α)). In particular, the following is an immediate
corollary of Theorem 2.3.

Theorem 2.7. Let X = JΛK ≤ G be a finite subgroup and A ⊂ X with density α. Let
c ∈ (R∗)s be a commutative s-tuple such that c1 + · · ·+ cs = 0. Finally, suppose that A
contains only trivial solutions to (2.1).
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There exists an integer 0 ≤ K �s L(α) and a finite set Γ ⊂ Ĝ such that |Γ| �s

α−1/(s−2)L(α) and
µ(〈(Λ ∪ Γ) · {1, c1, . . . , cs}2K〉)�s α

2. (2.3)

Proof. This follows immediately from our chain construction above, Theorem 2.3 and
part 5 of Lemma 2.4.

2.2.1 Function fields

As a first demonstration of the theory in the subgroup case we discuss the problem where
G = Fq[t], the ring of polynomials in the indeterminate t over Fq, the field with q elements.
Since this is a vector space over Fq there are certainly many subgroups in both G and
Ĝ. Furthermore, Fq[t] has a natural structure as an Fq[t]-module, and hence there is a
natural embedding of Fq[t]\{0} ⊂ R∗, the ring of injective endomorphisms on Fq[t]. In
particular, we fix some c ∈ (Fq[t]\{0})s such that c1 + · · ·+ cs = 0, and observe that the
set {1, c1, . . . , cs}2K is a subset of Fq[t]2`K+1, where ` = max1≤i≤s deg ci and Fq[t]n denotes
the set of polynomials of degree less than n.

We desire an upper bound for the density of subsets of some structured set X with
only trivial solutions to (2.1). Such a structured set does need to be a subgroup for
Theorem 2.7 to hold, but the conclusion of Theorem 2.7 shows that we also need to have
a reasonable amount of control on how 〈[X] · Fq[t]2`K+1〉 grows as K increases. Consider,
for example, the case

X =
{

N∑
i=0

ait
2i : ai ∈ Fq

}
.

It is easy to check that

[X] =
{
x ∈ F̂q[t] : deg x < −2N

}
+
{ 2N∑
i=0

ait
−2i : ai ∈ Fq

}
.

In particular, µ(〈[X] · Fq[t]2〉) = µ(F̂q[t]) = 1, and hence Theorem 2.7 will deliver only
the trivial bound α ≤ 1 when ` > 0, even though X is a finite subgroup of Fq[t]. When
` = 0 all the coefficients lie in Fq, and here one can use simpler methods to obtain good
quantitative results for all Fq-subspaces X ≤ G, as done by Liu and Spencer [39].

Hence we shall limit our attention to the case ` ≥ 1, which entails restricting our focus
from general finite subgroups of Fq[t] to those with suitably regular arithmetic behaviour.
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In particular, we shall consider the case when

X = AN = {x ∈ Fq[t] : deg x < N},

which is the Fq[t]-analogue of the interval {1, . . . , N} in the integers. In this case we have

[X] = {x ∈ F̂q[t] : deg x < −N}.

It follows that the subgroup [X] · Fq[t]2`K+1 ≤ F̂q[t] has measure of at most q2`K+1−N .
Furthermore, we may trivially contain any finite set Γ ⊂ F̂q[t] in a finite subgroup of F̂q[t]
of size at most q|Γ|, and Γ · Fq[t]n in a subgroup of size at most qn|Γ|. It follows that

µ(〈([X] ∪ Γ) · {1, c1, . . . , cs}2K〉)� qO(`K|Γ|)−N ,

where the implied constants are absolute. Thus the equation (2.3), on recalling the bounds
for K and |Γ| present in Theorem 2.7, becomes

L(α)�s log q
(
N − `α−1/(s−2)L(α)2

)
.

Rearranging this inequality yields the following corollary of Theorem 2.7, which gives a
strong quantitative result for Roth’s problem for linear equations with coefficients from
Fq[t].

Corollary 2.8. Let A ⊂ Fq[t]N with density α and c ∈ (Fq[t]\{0})s, with ` = max deg ci,
be such that c1 + · · ·+ cs = 0. Then if A has only trivial solutions to (2.1) we have

α�s

(
`
(logN)2

N

)s−2

,

where δ > 0 is some absolute constant depending only on s.

We observe in particular that the implied constant hidden in the � depends only on
s, and not on the coefficients c or even on q. Theorem 2.1 is an immediate corollary.

2.2.2 Drinfeld modules

An interesting feature of Fq[t] is that there are other natural ways to give it the structure
of an Fq[t]-module, which arise from the linearity of the Frobenius map x 7→ xp. In
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particular, for any r ≥ 0 and a1, . . . , ar ∈ Fq[t] with ar 6= 0 we may define a linear map
ρt : Fq[t]→ Fq[t] by

ρt(x) = tx+ a1x
p + a2x

p2 + · · ·+ arx
pr .

If we also define ρ1(x) = x then these combine to give, for any a ∈ Fq[t], an Fq-linear map
ρa : Fq[t]→ Fq[t] such that ρab = ρaρb. This induces an action of Fq[t] on Fq[t] – namely,
by letting c · a = ρc(a). Explicitly,

ρc(a) =
d∑
i=0

aiρti(a) where c =
d∑
i=0

ait
i,

and ρti is defined as the i-fold composition of ρt. The map ρ is known as a Drinfeld
module of rank r; the case r = 0 gives the trivial action of Fq[t] on Fq[t] discussed in the
previous section. The concept of a Drinfeld module can be vastly generalised; see Chapter
13 of [49] for more details.

By arguing exactly as in the previous section a similar result to Corollary 2.8 could be
obtained, with Fq[t]N replaced by Fq[t]N,ρ = {ρx(1) : x ∈ Fq[t]n}. This is to be expected,
as everything is isomorphic to the rank 0 case. What is more interesting, however, is that
one can control the behaviour of Fq[t]N itself relative to a Drinfeld module, leading to the
following result.

Corollary 2.9. Let ρ be any Drinfeld module. There exist constants C, δ > 0, depending
only on ρ and s, such that the following holds. Let A ⊂ Fq[t]N with density α and
c ∈ (Fq[t]\{0})s, with ` = max deg ci, be such that c1 + · · ·+ cs = 0. Then, if there are
only trivial solutions to

ρc1(x1) + · · ·+ ρcs(xs) = 0

with xi ∈ A, we have
α�s

1
NC/`

,

where the implied constant depends only on s.

Proof. For any finite Γ ⊂ Ĝ the set Γ · {1, c1, . . . , cs}2K is trivially contained in a finite
subgroup of Ĝ of size at most qO(`K|Γ|). Furthermore, if Λ = [Fq[t]N ] · Fq[t]8K` then JΛK
contains every finite subgroup X ≤ Fq[t] such that

⋂
a∈Fq [t]8`K

ρa(X) ⊂ Fq[t]N ,
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and so µ(Λ) ≤ |X|−1. In general, we claim that ∩a∈Fq [t]Mρa(Fq[t]N/CM ) ⊂ Fq[t]N for some
constant C > 0 depending only on ρ. This follows since for any x ∈ Fq[t] with degree d
there is a constant C such that deg ρt(x) = Cd, and hence in general if a has degree M
then deg ρa(x) ≤ CMd.

In particular, µ(Λ) ≤ q−N/C
`K for some C > 0 depending only on ρ. Theorem 2.7 then

implies that
expq

(
`α−1/(s−2)L(α)2 −NαOρ,s(`)

)
≥ α,

and the claim follows.

As a concrete example, we consider the simplest non-trivial example of a Drinfeld
module; namely, the Carlitz module defined by ρt(x) = tx+xp. Corollary 2.9 implies that
there exists an absolute constant C > 0 such that if A ⊂ Fq[t]N has density α � N−C

then it contains non-trivial solutions to both

x1 + tx2 − (1 + t)x3 = 0 and x1 + tx2 − (1 + t)x3 = (x3 − x2)p.

In general, we obtain the following version of the Erdős-Turán conjecture for Fq[t],
which is particularly interesting in that it applies simultaneously to all Drinfeld modules.

Theorem 2.10. Suppose that A ⊂ Fq[t] has positive lower density in the sense that

lim inf
N→∞

|A ∩ Fq[t]N | q−N > 0.

Then for any s ≥ 3, coefficients c ∈ (Fq[t]\{0})s such that c1 + · · ·+ cs = 0, and Drinfeld
module ρ, the set A contains infinitely many solutions to

ρc1(x1) + · · ·+ ρcs(xs) = 0

such that the variables xi are all distinct.

2.3 Weak structure

We have seen in the previous section that when every link in the chain consists of finite
subgroups then the construction of the next link in the chain is quite straightforward.
In the general case, however, the construction is more delicate. We still require our
initial set X to possess a fair degree of additive structure, but it is not necessary that
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it be a subgroup. In particular, we will be able to apply our constructions in the case
X = {1, . . . , N}, which is the classical setting of Roth’s theorem.

We first give some preliminary definitions. We say that X has additive growth of K if
for all n ≥ 1 we have

|2nX| ≤ K |nX| .

The sets for which we are able to construct a suitable chain will be restricted to those
which are of the shape nX where n is large and X is a symmetric set with additive growth
O(1). The primary example is when X = {−1, 0, 1} so that nX = {−n, . . . , n}. In fact, in
the integers, this example is essentially captures all the sets that we are able to construct
chains for. Indeed, the condition of bounded additive growth certainly implies that X
has polynomial growth in the sense that there exists some d ≥ 1 with |nX| ≤ nd |X| for
all n ≥ 1. It follows from inverse sumset results (see, for example, the survey of Sanders
[63]) that X is well-approximated in some sense by a generalised arithmetic progression.
More generally, for an arbitrary abelian group our methods are limited to sets which
closely resemble coset progressions, which are the sum of a subgroup and an arithmetic
progression. Thus, for the case G = Z at least, the reader would lose little in taking
X = {−1, 0, 1} in what follows, although we state our results and proofs more generally
to make plain precisely what structure is required.

We say that ρ : Ĝ→ [0, 1] is cofinite if ρ(γ) = 1 for all but finitely many γ ∈ Ĝ. For
any cofinite ρ and X ⊂ G we define the Bohr set with width ρ and ground set X as

X(ρ) = {x ∈ X : |1− γ(x)| ≤ 2ρ(γ) for all γ ∈ Ĝ}.

The importance of such sets in the study of translation invariant equations was first
recognised by Bourgain [6], although the definition we give here is more general, in that
we allow arbitrary ground sets X, and our discussion is valid for any abelian group G.
For any cofinite ρ1, ρ2 : Ĝ→ (0, 1] let

Φ(ρ1, ρ2) =
∏
γ∈Ĝ

ρ1(γ)
ρ2(γ) ,

which is a finite product by cofiniteness, and let Φ(ρ) = Φ(ρ, 1). If λ ∈ [0, 1] and ρ is
cofinite then we will abuse notation by writing λρ for the cofinite dilate defined by

(λρ)(γ) =

λ(ρ(γ)) if ρ(γ) < 1 and

1 otherwise.
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Furthermore, by ρ1 ∧ ρ2 we denote the cofinite function defined by

(ρ1 ∧ ρ2)(γ) = min(ρ1(γ), ρ2(γ)).

Finally, if ρ is cofinite then rk(ρ) denotes the number of γ ∈ Ĝ such that ρ(γ) < 1.
Each link in our chain will be composed of sets of form X(ρ) for suitably chosen X

and ρ, and so it is crucial to have a good lower bound on the size of such sets. For general
finite X such a bound cannot be obtained, but if X has a reasonable amount of additive
structure then we can use a probabilistic argument. We will require the following covering
lemma due to Ruzsa [57]. We will give a proof of this lemma as Lemma 4.15 in Chapter 4.

Lemma 2.11 (Ruzsa [57]). Let X and Y be finite subsets of G. If |X + Y | ≤ K |Y | then
X ⊂ Y − Y + T for some T ⊂ G such that |T | ≤ K.

In the original work by Bourgain [6] a lower bound on the size of Bohr sets was
obtained by Fourier analysis, and in particular the properties of the Fejer kernel. This
argument is special to the integers, however. In the book of Tao and Vu [75] they give (as
their Lemma 4.20) an alternative argument for the case when X is a finite group, which
is robust enough to adapt for our purposes.

Lemma 2.12. For all finite X ⊂ G and cofinite ρ1, ρ2 : Ĝ→ (0, 1] such that ρ2 ≤ ρ1 we
have

|X(ρ1)| ≤ 4rk(ρ2)Φ(ρ1, ρ2) |(X −X)(ρ2)| .

In particular if ρ is cofinite then

|(X −X)(ρ)| ≥ 4−rk(ρ)Φ(ρ) |X| .

Furthermore, if Y is a finite set such that |X + Y | ≤ K |Y | then

|X(ρ1)| ≤ K4rk(ρ2)Φ(ρ1, ρ2) |(2Y − 2Y )(ρ2)| .

Proof. Let Γ denote the set of γ ∈ Ĝ such that ρ2(γ) < 1 and for γ ∈ Γ consider the
set of ν ∈ C such that |ν| = 1 and |1− ν| ≤ 2ρ1(γ). It is clear that there exist at
most kγ ≤ d2ρ1(γ)/ρ2(γ)e circles of radius ρ2(γ) which completely cover such a set. In
particular X(ρ1) is covered by at most ∏γ∈Γ kγ many sets of the shape

{x ∈ X : γ(x) ∈ Dγ for all γ ∈ Γ},
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where each Dγ is a circle of radius at most ρ2(γ). If such a set is denoted by X ′ then it is
clear that X ′ −X ′ ⊂ (X −X)(ρ2). Hence

|X(ρ1)| ≤
∏
γ∈Γ

kγ |(X −X)(ρ2)| ≤ 4rk(ρ2)Φ(ρ1, ρ2) |(X −X)(ρ2)|

as required. If |X + Y | ≤ K |X| then Lemma 2.11 implies that X is covered by at most
K translates of Y − Y , and hence each such X ′ is covered by at most K sets of the shape
X ′′ such that X ′′ −X ′′ ⊂ (2Y − 2Y )(ρ2), and the lemma follows as before.

Lemma 2.12 is particularly useful when applied to sets with bounded additive growth.

Corollary 2.13. Suppose that a finite symmetric set X ⊂ G has additive growth of K.
For all n ≥ m ≥ 2−jn ≥ 4,

|(mX)(ρ/2)| ≥ K−j−48−rk(ρ) |(nX)(ρ)| .

Proof. Let m′ = bm/4c ≥ 1 and choose k such that 2k−1 < n ≤ 2k, so that m′ ≥ 2k−j−3.
Since X has additive growth of K,

|nX +m′X| ≤ |2nX| ≤
∣∣∣2k+1X

∣∣∣ ≤ Kj+4
∣∣∣2k−j−3X

∣∣∣ ≤ Kj+4 |m′X| .

It follows from Lemma 2.12 that

|(4m′X)(ρ/2)| ≥ K−j−48−rk(ρ) |(nX)(ρ)| ,

and the claim follows since 4m′X ⊂ mX.

To construct a chain we need to produce, for any given set in some link of the chain,
sets for the next chain which are sheltered by it, and are sufficiently structured in their
own right. One might first hope that, if our original set is a Bohr set, then all subsets
which are also Bohr sets whose width functions are suitably chosen dilates of the original
width function are suitable for this purpose. In general, however, it is impossible to
produce the required amount of shelter from such sets – the best one can hope for is the
trivial relationship X(ρ) +X(λρ) ⊂ (2X)((1 + λ)ρ), and hence the sumset can grow by a
factor exponential in the rank of ρ, which is far too costly for our purposes.

It was Bourgain [6] who first saw how to avoid this difficulty, and hence enabled the
use of Bohr sets of the type X(ρ) in proving Roth’s theorem. In particular, by a simple
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covering argument he showed that, while an arbitrary Bohr set may not shelter its subsets
very well, there exist many ‘regular’ Bohr sets which do shelter smaller Bohr sets very
effectively. In particular, these regular Bohr sets are so plentiful that we may restrict the
chain to include only regular Bohr sets without any real quantitative cost.

In general, we say that (X,n, ρ) is (δ, κ)-regular if, letting λ = κδrk(ρ)−1, for all
1 ≤ s ≤ λn and ρ′ ≤ λρ the set (sX)(ρ′) is δ-sheltered by (nX)(ρ). Bourgain’s covering
argument from [6] allows one to always ‘regularise’ any given Bohr set without much cost.

We remark that this problem of regularity is the reason that our results are limited
to ground sets of the shape nX for some structured X and large n, as can be seen from
examining the proof below. In turn, as mentioned above, this essentially limits us, in the
integers, to arithmetic progressions. If a suitable alternative route to regularity is found
it may be possible to extend our results to other cases of interest, such as when X is the
set of the first n prime numbers or square numbers.

Lemma 2.14. Let δ ∈ (0, 1] and ρ : Ĝ→ (0, 1] be a cofinite function. If X has additive
growth of K ≥ 4 and n ≥ 4 then there exists ρ′ ≈ ρ and n′ ≈ n such that (X,n′, ρ′) is
(δ, 2−5(logK)−1)-regular.

Proof. Let r = rk(ρ) and choose some integer m such that 24δ−1r logK > m ≥
23δ−1r logK. Let t = dn/2e and observe that if s ≤ 2−5(logK)−1δr−1n then ms < n/2,
so that t+ms ≤ n. Let Xj = (t+js)X for 0 ≤ j ≤ m and λi = 1/2+ i/2m for 0 ≤ i ≤ m,
so that

1/2 = λ0 < λ2 < · · · < λm = 1.

Hence
|(tX)(ρ/2)|
|(nX)(ρ)| ≤

|X0(λ0ρ)|
|Xm(λmρ)| =

m−1∏
i=0

|Xi(λiρ)|
|Xi+1(λi+1ρ)| .

Suppose that each of the factors on the right hand side is at most (1 + δ)−1. Using the
inequality 1 + x ≥ e0.567x, valid for all 0 ≤ x ≤ 1,

|(tX)(ρ/2)|
|(nX)(ρ)| ≤ (1 + δ)−m ≤ exp (−0.567δm) < K−58−r,

since δm/r > 5 logK + log 8/0.567. By Corollary 2.13, however, the left hand side is at
least K−58−r and we have a contradiction. It follows that for some 0 ≤ i < m

|Xi+1(λi+1ρ)| ≤ (1 + δ) |Xi(λiρ)| ,
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that is,
|((t+ is)X)(λiρ) + (sX)(ρ/2m)| ≤ (1 + δ) |((t+ is)X)(λiρ)| .

The proof is completed by letting n′ = t+ is and ρ′ = λiρ.

Before presenting our chain construction we need to make a couple of technical
definitions that will control how dilations by the coefficients ci ∈ R affect Bohr sets. Given
finite sets A ⊂ R and X ⊂ G we say that A is m-constrained over X if a · X ⊂ mX

for all a ∈ A. We will also abuse this notation for tuples c ∈ Rs by saying that c is
m-constrained over X if the set {c1, . . . , cs} is.

If a ∈ R and ρ is cofinite then we define

(ρ ◦ a)(γ) =

infγ′a=γ ρ(γ′) if γ = γ′a for some γ′ ∈ Ĝ, and

1 otherwise.

If A ⊂ R∗ then we let ρ ◦ A = mina∈A ρ ◦ a. We observe that this operation commutes
with dilation, so that λ(ρ ◦ a) = (λρ) ◦ a. Furthermore, rk(ρ ◦ A) ≤ |A| rk(ρ).

These definitions will be important because, as can be seen from the definition of
a permissible collection, to construct a permissible collection for a Bohr set X we will
need to be able to construct a sheltered Bohr set X ′ such that a ·X ′ ⊂ X. The following
lemma demonstrates how our definitions will allow this.

Lemma 2.15. Let X ⊂ G be a finite set and let A ⊂ R be a finite set such that A is
m-constrained over X. If n′ ≤ n/m and X ′ = (n′X)(ρ ◦A) then a ·X ′ ⊂ (nX)(ρ) for all
a ∈ A.

Proof. By the definition of m-constraint it is clear that a · (n′X) ⊂ nX for all a ∈ A. Let
x ∈ (n′X)(ρ ◦ A) and suppose that γ ∈ Ĝ is such that ρ(γ) < 1. We have

|1− γ(ax)| = |1− (γa)(x)| ≤ 2(ρ ◦ A)(γa) ≤ 2ρ(γ)

by definition, and hence ax ∈ (nX)(ρ) as required.

We now at last combine our technical lemmata to perform a chain construction which
is valid even for sets which are not subgroups, although we will still require a fairly strict
amount of additive control; as noted above, in the case G = Z this is restrictive enough
to essentially limit us to arithmetic progressions.
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Lemma 2.16. Let X ⊂ G be a finite symmetric set with additive control K ≥ 4 and
ρ : Ĝ→ [0, 1] be cofinite with rank r. Let c ∈ (R∗)s be commutative and m-constrained
over X. Let κ = 2−5(logK)−1. If (X,n, ρ) is (δ, κ)-regular and a ∈ R∗ commutes with c
then the following collection B is permissible for (a · ((nX)(ρ)), c; δ, d).

The collection B comprises every set of the shape a′ · ((n′X)(ρ′)) where

1. (X,n′, ρ′) is (δ, κ)-regular,

2. a′ ∈ R∗ commutes with c,

3. n′ �s bm−2λnc, and

4. ρ′ ≥ λ(ρ ◦ {1, c1, . . . , cs}2) ∧ ρΓ, for some cofinite ρΓ with rank at most d satisfying
ρΓ � 1/d,

where λ� (δ/r logK)3.

Loosely speaking, our chain construction allows us to proceed from a set of the shape
a · ((nX)(ρ)) to one of the shape a′ · ((n′X)(ρ′)) where n′ and ρ′ are suitably controlled
as above.

Proof. We observe that, without loss of generality, we may suppose that a = 1, for all the
sets in our construction can be dilated by a without harming any of the necessary shelter
or control properties.

We first need to construct a good pair (B̃, B̃′) for ((nX)(ρ), c; δ). The hypothesis of
regularity guarantees that if λ1 = κδ/r and n1 = bλ1nc then (n1X)(λ1ρ) is δ-sheltered
by (nX)(ρ). For (B̃, B̃′) to satisfy the first property of a good pair it thus suffices
that c1 · B̃, cs · B̃, c1cs · B̃′ ⊂ (n1X)(λ1ρ). Let ñ ≈ bn1/mc and ρ̃ ≈ λ1ρ ◦ {1, c1, cs}
be chosen such that (X, ñ, ρ̃) is (δ, κ)-regular. By Lemma 2.15 if B̃ = (ñX)(ρ̃) then
c1 · B̃, cs · B̃ ⊂ (n1X)(λ1ρ) as required.

We further require that c2 · B̃′ + · · · + cs−1 · B̃′ be δ-sheltered by B̃ and c1cs · B̃′ ⊂
(n1X)(λ1ρ). By the regularity of B̃ imposed above if λ2 = κδ/3rs and n3 ≤ λ2ñ then
(on noting that ρ̃ has rank at most 3r by construction) s((n3X)(λ2ρ̃)) is δ-sheltered by
B̃. In particular, if we choose ñ′ ≈ bλ2ñ/mc and ρ̃′ ≈ λ2ρ̃ ◦ {1, c2, . . . , cs−1, c1cs} such
that (X, ñ′, ρ̃′) is (δ, κ)-regular and let B̃′ = (ñ′X)(ρ̃′), then by Lemma 2.15 once again
{1, c2, . . . , cs−1, c1cs} · B̃′ ⊂ (λ2ñX)(λ2ρ̃), which implies the required amount of shelter.
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This completes the construction of a suitably good pair (B̃, B̃′). We pause to observe
the bounds

ñ′ �s

(
κδ

rm

)2

n and ρ̃′ �s

(
κδ

r

)2

ρ ◦ {1, c1, . . . , cs}2.

It remains to extend this to give a construction of a collection B which is permissible for
((nX)(ρ), c; δ, d). We first require that c1cs · B̃′, c1 · B̃ and cs · B̃ are all members of B,
which is clearly the case with the collection given in the statement of the lemma. We now
fix some finite Γ ⊂ Ĝ of size at most d and some 1 < i < s. It remains to include in B

some c1csci ·X ′ where X ′ ⊂ B̃′ has (4d)−1-control of Γ and is δ-sheltered by B̃′.
With λ3 = κδ/4sr, we choose an integer n′ ≈ bλ3ñ

′c and ρ′ ≈ λ3ρ̃
′ so that (X,n′, ρ′) is

(δ, κ)-regular and (n′X)(ρ′) is δ-sheltered by B̃′. Furthermore, we certainly have X ′ ⊂ B̃′

as required. Finally, we let X ′ = (n′X)(ρ′ ∧ ρΓ), where ρΓ(γ) ≈ 1/4d if γ ∈ Γ and is 1
otherwise, and is chosen such that (X,N ′, ρ′ ∧ ρΓ) is (δ, κ)-regular. This completes the
construction of X ′, and it is clear that it has the form specified in the statement of the
lemma.

We may now iterate this construction to create a chain suitable for an application of
Theorem 2.3, which yields the following.

Theorem 2.17. Let X ⊂ G be a finite symmetric set with additive control K ≥ 4 and
n ≥ 4, and let A ⊂ nX with density α. Let c = (c1, . . . , cs) ∈ (R∗)s be a commutative
s-tuple which is m-constrained by X such that c1 + · · ·+ cs = 0. Finally, suppose that A
contains only trivial solutions to (2.1).

There exist integers 0 ≤M �s L(α) and

n′ �s

(exp(−L(α)2)
m logK

)M
n

 ,
and a cofinite ρ′ of rank at most Os(α−1/(s−2)L(α)) such that

ρ′ �
(

exp(−L(α)2)
logK

)M

so that ∣∣∣(n′X)(ρ′ ◦ {1, c1, . . . , cs}M)
∣∣∣−1
�s α

2.
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Finally, the lower bound on the size of Bohr sets provided by Lemma 2.12 leads
to the desired lower bound for α. It only remains to introduce one final definition to
convert the awkward width function ρ ◦ {1, . . . , cs}M into something more amenable. Let
Fd : Ĝ→ P(Ĝ) be such that |Fd(γ)| ≤ d for all γ ∈ Ĝ and, furthermore, Fd(Fd(Γ)) = Fd(Γ)
for all finite Γ ⊂ Ĝ. We say that (Fd,m) dominates A ⊂ R if, for any cofinite ρ : Ĝ→ [0, 1],
we have, for all γ ∈ Ĝ and x ∈ G,

if |1− γ′(x)| ≤ ρ(γ)/m for all γ′ ∈ Fd(γ) then |1− γ(x)| ≤ 2(ρ ◦ A)(γ).

In our applications, the function Fd will in fact depend only on G. The point is that we
will need to be able to control the rank and size of width functions of the shape ρ ◦ AM

for some A depending on the coefficients c, which the parameters Fd and m offer. We
admit that this definiton is a little obtuse, and refer the reader to the applications to
follow for clarification.

Theorem 2.18. Let X ⊂ G be a finite symmetric set with additive control K ≥ 4 and
n ≥ 4, and let A ⊂ nX with density α. Let c = (c1, . . . , cs) ∈ (R∗)s be a commutative
s-tuple which is m-constrained by X such that c1 + · · · + cs = 0. Finally, suppose that
(Fd,m′) dominates {1, c1, . . . , cs}.

If A contains only trivial solutions to (2.1) then there exists an integer

n′ �s bexp
(
−Os

(
L(α)

(
L(α)2 + log logK + logm

)))
nc

such that

exp
(
Os

(
dα−1/(s−2)L(α)2

(
L(α)2 + log logK + logm′

)))
�s |n′X| . (2.4)

Proof. By Theorem 2.17 there exist integers 0 ≤M �s L(α) and

n′ �s bexp
(
−L(α)Os

(
L(α)2 + log logK + logm

))
nc

and a cofinite ρ′ of rank at most Os(α−1/(s−2)L(α)) such that

ρ′ � exp(−L(α)Os(L(α)2 + log logK))

and ∣∣∣(n′X)(ρ′ ◦ {1, . . . , cs}M)
∣∣∣−1
�s α

2.
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We now use the hypothesis that (Fd,m′) dominates {1, . . . , cs}. If we let ρ′′ be the width
function defined by

ρ′′(γ) =

(m′)−M infγ′∈F−1
d

(γ) ρ
′(γ′) where F−1

d (γ) = {γ′ ∈ Ĝ : γ ∈ Fd(γ′)} 6= ∅, and

1 otherwise

then it follows from the definitions that rk(ρ′′) ≤ drk(ρ′),

ρ′′ � exp(−L(α)Os(L(α)2 + log logK + logm′)),

and that for any Y we have Y (ρ′′) ⊂ Y (ρ′ ◦ {1, . . . , cs}M). In particular, by Lemma 2.12
it follows that

exp
(
Os

(
dα−1/(s−2)L(α)2

(
L(α)2 + log logK + logm′

)))
�s |n′X|

as required.

2.3.1 The integers

The most important application of Theorem 2.18 is to the classical setting of Roth’s
problem; namely, whereG = Z (we recall that the endomorphism ring of Z is identical to Z).
On recalling the definitions it is clear from the triangle inequality that, if c ∈ (Z\{0})s with
` = max1≤i≤s |ci|, then c is `-constrained by any finite symmetric X ⊂ Z. Furthermore,
by the triangle inequality (ι1, `) dominates {1, c1, . . . , cs}, where ι1 is the identity function.
Thus the technical burdens of the previous section are immediately lightened.

It remains to choose a suitable ground set X ⊂ Z which has bounded additive control.
The obvious choice is X = {−1, 0, 1} which has additive control of 2. As discussed in
the previous section, for the integers this is, in some sense, the only reasonable choice to
make. With this choice the bound (2.4) thus becomes

exp
(
Os

(
α−1/(s−2)L(α)2

(
L(α)2 + log `

)))
�s n.

After some simple algebra the following theorem is an immediate corollary of Theorem 2.18.

Theorem 2.19. Let A ⊂ {1, . . . , N} with density α and c = (Z\{0})s be such that
c1 + · · ·+ cs = 0. Let ` = max1≤i≤s |ci|. If A contains only trivial solutions to (2.1) then

α�s

(
(log logN)2 ((log logN)2 + log `)

logN

)s−2

,

where the implied constant depends only on s.
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In particular, taking c = (1, 1,−2) we obtain a new quantitative bound for Roth’s
theorem on three term arithmetic progressions: if A ⊂ {1, . . . , N} with density α contains
only trivial three term arithmetic progressions then

α� (log logN)4

logN .

It is interesting to observe the dependence on ` in this result. For example, we
can obtain the following result, which generalises our bound for three term arithmetic
progressions to a host of other equations simultaneously.

Corollary 2.20. If A ⊂ {1, . . . , N} has density

α� (log logN)4

logN

then A contains non-trivial solutions to the equation

sx1 + (t− s)x2 = tx3

for every 1 ≤ s ≤ t ≤ exp((log logN)2).

2.3.2 Multi-dimensional integers

A benefit of developing our theory in such general terms is that it is straightforward to
obtain multi-dimensional generalisations. In this section we consider the problem where
G = Zd; we recall that Ĝ = Td. Analogous to the previous section, a suitable ground set is
given by X = {−1, 0, 1}d, which has additive control K = 2d. If we fix some c ∈ GLd(Z)s

and ` = max1≤i≤s max1≤j,k≤d |ci(jk)| then it follows from the triangle inequality that c is
d`-constrained over X.

Furthermore, we will define Fd2 to be the function which takes the character γ =
(γ1, . . . , γd) to the set {eijγ}1≤i,j≤d, where eij is the matrix which has 1 in the (i, j)th entry
and 0 everywhere else. It follows from the triangle inequality that (Fd2 , d`) dominates
{1, c1, . . . , cs}.

As in the previous section, we thus have the following immediate corollary of Theo-
rem 2.18.
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Theorem 2.21. Let A ⊂ {1, . . . , N}d with density α and c = (c1, . . . , cs) ∈ GLd(Z)s be
such that c1 + · · ·+ cs = 0 and cicj = cjci for 1 ≤ i ≤ j ≤ s. If A contains only trivial
solutions to (2.1) then

α�s

(
d

(log logN)2 ((log logN)2 + log d+ log `)
logN

)s−2

,

where the implied constant depends only on s.

In some cases this gives a quantitative improvement on the work of Prendiville [48],
which established a bound of α�d,` 1/ log logN in the case s = 3, though Prendiville’s
work is more general in that it is able to handle one of the coefficients having rank less
than d. We mention the following example from [48] to which our Theorem 2.21 does
apply: finding right-angled isosceles triangles in A ⊂ {1, . . . , N}2, which are solutions to
the equation 1 0

0 1

x1 +
0 −1

1 0

x2 +
−1 1
−1 −1

x3 =
0

0

 .
A similar problem to which our theory does not apply is the problem of sets without

‘corners’, right-angled triangles with sides parallel to the axes, for which quantitative
results have been achieved by Shkredov [67]. We recall from the introduction that this is
equivalent to studying solutions of the equation

−1 1 0
−1 −1 0
−2 0 2

x1 +


1 0 0
0 1 0
1 0 −1

x2 +


0 −1 0
1 0 0
1 0 −1

x3 =
0

0

 ,
with variables xi ∈ A ⊂ {−N, . . . , N}3 ∩D, where D is the plane {(x1, x2, x3) : x2 = x3}.
We observe that

{−N, . . . , N}3 ∩D = N
(
{−1, 0, 1}3 ∩D

)
= NX,

say. The set X certainly has bounded additive control. The problem is the hypothesis of
constraint; we recall that for our theory to be applicable we required there to be some m
such that ci ·X ⊂ mX for 1 ≤ i ≤ 3. This condition fails completely for this problem,
however, since the plane D is not closed under dilation by the coefficients ci. It is for
precisely the same reason that our methods cannot handle k-term arithmetic progressions
for k > 3.
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chapter 3

AN IMPROVED DENSITY INCREMENT ARGUMENT

In this chapter we prove Theorem 2.3, which provides a lower bound for the density of
sets without solutions to a given translation invariant equation, which we applied in the
previous chapter. In broad strokes our proof follows the traditional density increment
strategy first used in the original paper of Roth [50]. It incorporates improvements to
this original method by Szemerédi [73], Heath-Brown [33], Bourgain [6, 9] and Sanders
[60, 61]. The main new ingredient of the approach in this chapter, and the primary reason
for the quantitative improvements on previous work, is a new structural result on the
set of large Fourier coefficients inspired by related results of Bateman and Katz [1] and
Shkredov [69].

The method presented here has appeared, in the case of finite groups, in [4]. An
alternative method, which generalised the work of Sanders [60] on the traditional case of
Roth’s theorem to more general translation invariant equations, appeared earlier in [3];
this alternative method is both more technically challenging and delivers weaker bounds,
but we include a proof of the main lemma involved as it includes a generalisation of the
combinatorial methods of [60] which may be useful for other problems.

3.1 A heuristic discussion

We begin with a heuristic outline of the proof. We recall that we are working within an
abelian group G with endomorphism ring R; for simplicity we will restrict ourselves in
this discussion to the case when G is finite, our equation has only three variables, and R
is a commutative integral domain. In particular, if |G| = N then the Haar probability
measure on Ĝ is the measure assigning the weight 1/N to each γ ∈ Ĝ. We will simplify
matters still further by not keeping track of some logarithmic factors; to this end we write
X .α Y when X � L(α)CY for some absolute constant C, and similarly for Õ(·) and
Ω̃(·).

The problem is this: having fixed some c1, c2, c3 ∈ R such that c1 + c2 + c3 = 0, and
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some finite set X ⊂ G with a certain amount of structure, what is the size of the largest
subset of X which contains only trivial solutions to the equation

c1x1 + c2x2 + c3x3 = 0, (3.1)

where a trivial solution is one which satisfies x1 = x2 = x3? The natural approach is to
find some lower bound for the inner product

Υc(A) = 〈(c1 · A) ∗ (c2 · A), (−c3 · A)〉, (3.2)

which counts the number of solutions (including trivial ones) to (3.1). The lower bound
will depend only on the size of A; thus, suppose we have the lower bound Υc(A) ≥ L(|A|).
If A contains only trivial solutions then L(|A|) ≤ Υc(A) ≤ |A|, which after rearranging
will give an upper bound on |A|. We find a lower bound for (3.2) using the traditional
density increment strategy, which is an iterative argument due originally to Roth [50].

We first observe that, if A ⊂ X is a random set with density α and X is roughly
closed under addition and dilation by the coefficients ci, then the expected value of
Υc(A) is α |A|2; indeed, having fixed any x1, x2 ∈ A the probability that the value of x3

which satisfies (3.1) belongs to A is α. It follows that if Υc(A) is much smaller than this
expected value then A does not behave like a random set, and hence should not be evenly
distributed within X. In particular, if we partition X into a small number of structured
parts X1 t · · · tXk then A is relatively concentrated in some part of this partition. By
iterating this argument we may increase the degree of concentration until it exceeds some
trivial upper bound, and so we must halt with a lower bound for Υc(A).

As usual with linear problems, we measure how ‘structured’ the set A is by its Fourier
coefficients. Thus the iterative step of the density increment strategy breaks down into
two stages:

1. show that if (3.2) is smaller than the expected value of α |A|2 then A (or some dilate
of A) has many large non-trivial Fourier coefficients, and

2. show that if A has many non-trivial large Fourier coefficients then it has greater
than expected density on some large structured subset X ′ ⊂ X; that is, for some
ν > 0 we have

α′ = |A ∩X
′|

|X ′|
≥ (1 + ν)α′.
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Given such information, it is clear how to repeatedly apply this argument to yield a
lower bound for Υc(A). Since A ∩X ′ also contains no non-trivial solutions to (3.1) we
can repeat this argument for A ∩X ′ ⊂ X ′, and so on, until we arrive at some set A0 ⊂ A

and some structured set X0 ⊂ X such that A0 ⊂ X0 has at least the expected number of
solutions to (3.1), so that Υc(A) ≥ Υc(A0) ≥ α0 |A0|2 ≥ α |A|2 (|X0| |X|−1)2. Provided
|X0| is not too small relative to |X| this gives us a non-trivial lower bound for Υc(A).

There are two fundamental parameters which control how small X0 is: how many
times we may have to run the density increment argument until we have the desired lower
bound on Υ, and how small X ′ is in relation to X at each stage. The former is controlled
by ν, for after K iterations of the argument we have density αK ≥ (1 + ν)Kα, and hence
the trivial bound αK ≤ 1 forces the argument to halt after at most K .α ν

−1 steps.
The latter is more delicate to control, for how large X ′ can be taken depends not only

on the size of X but also on its finer structural properties. We recall that X needs to
be roughly closed under addition and dilation by the coefficients ci; for the purposes of
this discussion we shall capture this property by supposing that there is some constant
K(c) ≥ 2 such that |c1 ·X + c2 ·X + c3 ·X| ≤ KdX |X| for some integer dX ≥ 1, which
we shall refer to as the dimension of X. In our argument X ′ will be a subset of X which
is controlled on some set Γ ⊂ Ĝ (i.e. γ(x) ≈ 1 for all x ∈ X ′ and γ ∈ Γ), and subject
to some additional structural requirements which we will ignore for this discussion. If
|Γ| = r then we are able to obtain the lower bound |X ′| ≥ exp(−O(dX + r)) |X| and
dX′ ≤ dX +O(r). It thus suffices to control the parameter r, which we will call the rank
increment.

Suppose, then, that we can prove the argument above with density increment ν and
rank increment r. We begin with some A ⊂ G with density α. Iterating the argument
above leads to a sequence of sets G ⊃ X1 ⊃ · · · ⊃ XK for some K .α ν

−1, with dXi � ir,

|XK | ≥ exp(−O(dX1 + · · ·+ dXK +Kr))N ≥ exp(−O(K2r))N,

and
Υc(A) ≥ α3 |XK |2 ≥ α3 exp(−O(K2r))N2.

In particular, if A contains only trivial solutions to (3.1) then Υc(A)� αN , and hence

rν−2 &α logN,
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which leads to an upper bound on α, the quality of which depends on how the parameters
ν and r depend on the density α.

Thus, for example, when G = Z/NZ the method of Bourgain [6] gives a density
increment of ν � α and a rank increase of r � 1, which implies that

α�ε
1

(logN)1/2−ε for all ε > 0.

On the other hand, the method of Sanders [60] achieves a density increment of ν � 1 and
a rank increase of r .α α

−1, which implies that

α�ε
1

(logN)1−ε for all ε > 0.

We now discuss our new method, which also achieves a density increment of ν � 1
and a rank increase of r .α α

−1. This is done in a more direct fashion than the method
of Sanders, which leads to some marginal quantitative improvements in the hidden factors
of L(α).

For simplicity, we let A ⊂ G be a set of density α. It is, of course, crucial that our
argument below is equally valid when G is replaced with some suitably structured X ⊂ G,
and in particular it is important that the sets X produced in each stage of the density
increment argument are structured enough for a ‘local’ Fourier analysis to hold.

We first observe that by taking the Fourier transform we have

Υc(A) = 1
N

∑
γ∈Ĝ

̂(c1 · A)(γ) ̂(c2 · A)(γ) ̂(−c3 · A)(γ)

= α |A|2 + 1
N

∑
γ 6=0

̂(c1 · A)(γ) ̂(c2 · A)(γ) ̂(−c3 · A)(γ).

In particular, if Υc(A) is much smaller than α |A|2 then∣∣∣∣∣∣ 1
N

∑
γ 6=0

̂(c1 · A)(γ) ̂(c2 · A)(γ) ̂(−c3 · A)(γ)

∣∣∣∣∣∣� α |A|2 .

By Hölder’s inequality there exists some 1 ≤ i ≤ 3 such that

1
N

∑
γ 6=0

∣∣∣∣(̂ci · A)(γ)
∣∣∣∣3 � α |A|2 .
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For convenience, we shall suppose henceforth that ci = 1; the passage to more general
coefficients is a purely technical difficulty, as we can pass from A to arbitrary dilations of
A without altering the fundamental property of containing only trivial solutions to (3.1).

We now observe that many characters in Ĝ can be discarded without affecting this
lower bound; namely, if ∆η(A) = {γ ∈ Ĝ :

∣∣∣Â(γ)
∣∣∣ ≥ η |A|} then, by Parseval’s identity,

1
N

∑
γ 6∈∆η(A)

∣∣∣Â(γ)
∣∣∣3 ≤ η |A| 1

N

∫ ∑
γ

∣∣∣Â(γ)
∣∣∣2 = η |A|2 .

In particular, there exists some absolute constant c > 0 such that

1
N

∑
γ∈∆cα(A)\{0}

∣∣∣Â(γ)
∣∣∣3 � α |A|2 . (3.3)

Using the trivial upper bound
∣∣∣Â(γ)

∣∣∣ ≤ |A| leads to the lower bound

1
N

∑
γ∈∆cα(A)\{0}

∣∣∣Â(γ)
∣∣∣2 � α |A| . (3.4)

More generally, we say that A has correlation of strength τ with ∆ if

1
N

∑
γ∈∆\{0}

∣∣∣Â(γ)
∣∣∣2 � τ |A| .

To see how correlation can be converted into density increment, we first observe that if a
finite set X ⊂ G is controlled on γ then

∣∣∣X̂(γ)
∣∣∣� |X|. In particular, if A has correlation

of strength τ with ∆ then by Parseval’s identity, since ̂(A− α)(γ) = Â(γ) if γ 6= 0,

‖(A− α) ∗X‖2
2 = 1

N

∑
γ 6=0

∣∣∣Â(γ)
∣∣∣2 ∣∣∣X̂(γ)

∣∣∣2 � τ |A| |X|2 .

Assuming X has a reasonable amount of additive structure the left hand side is approx-
imately ‖A ∗X‖2

2 − α |A| |X|2, and hence by the trivial bound ‖f‖2
2 ≤ ‖f‖∞ ‖f‖1 we

have
‖A ∗X‖∞ ‖A ∗X‖1 � |A| |X|

2 (α + τ) .

Since ‖A ∗X‖1 = |A| |X| we have thus shown that correlation of strength τ with ∆
implies a density increment of τα−1 on any set X which is controlled on ∆ and has a
reasonable amount of additive structure.
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We showed above that if A has only trivial solutions to (3.1) then it has correlation of
strength Ω(α) with ∆cα(A). By Parseval’s identity we have the immediate upper bound
|∆η(A)| � η−2α−1, and so our discussion thus far leads to a density increment of ν � 1
and rank increment of r � α−3.

We can do better, however, and start with the simple observation that if there is a set
Λ such that

∆ ⊂ 〈Λ〉 =

∑
λ∈Λ

ελλ : ελ ∈ {−1, 0, 1}

 , (3.5)

then control on Λ implies control on ∆. In particular, we say that ∆ is d-covered if (3.5)
is possible with some Λ of size at most d. Thus, by the above, if we have correlation of
strength Ω(τ) with a d-covered set ∆ then we can prove a density increment of ν � 1
and a rank increment of r � d.

In the course of improving the quantitative bounds for the inverse sumset problem
Chang [13] showed that ∆η(A) is Õα(η−2)-covered. This fact, combined with the above,
yields a density increment of ν � 1 and a rank increment of r � α−2. Chang’s lemma is
quantitatively the best possible result, as shown by Green [27], and hence an alternative
approach is needed for any improvement.

We recall that in passing from (3.3) to (3.4) we used the trivial bound
∣∣∣Â(γ)

∣∣∣ ≤ |A|.
Instead, we now use something a little more refined. We can partition ∆cα(A) into at
most Õα(1) sets of the shape

∆̃η(A) = {γ ∈ Ĝ :
∣∣∣Â(γ)

∣∣∣ ≈ η |A|}

for η � α. It follows from (3.3) by the pigeonhole principle that there exists some η � α

such that
1
N

∑
γ∈∆̃η(A)

∣∣∣Â(γ)
∣∣∣3 &α α |A|2 ,

and hence
|∆η(A)| ≥

∣∣∣∆̃η(A)
∣∣∣ &α η

−3.

This should be compared to the trivial bound |∆η(A)| � η−2α−1. In particular, let
∆′ ⊂ ∆η(A) be any set such that |∆′| � η |∆η(A)|. We have

1
N

∑
γ∈∆′\{0}

∣∣∣Â(γ)
∣∣∣2 � η2α |A| |∆′| &α α |A| .
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Thus we have shown that there exists η � α such that A has correlation of strength
Ω̃α(α) with any subset ∆′ ⊂ ∆η(A) such that |∆′| � η |∆η(A)|.

In our new method we exploit this fact using a new structural result which will act as
a quantitatively superior substitute for the previously mentioned lemma of Chang. This
was inspired by similar structural results in the recent progress made by Bateman and
Katz [1] for Roth’s theorem over Fn3 . We recall that Chang’s lemma says that ∆η(A) is
Õα(η−2)-covered. Our new structural lemma says that there exists a set ∆′ ⊂ ∆η(A) such
that |∆′| � η |∆η(A)| which is Õα(η−1)-covered. Thus, if we are willing to pass to an
η-dense subset of the spectrum we can achieve a covering which is more efficient by a
factor of η than that given by Chang’s lemma.

As shown above, in the present argument we can pass to an η-dense subset while still
preserving the necessary amount of correlation, and so our new structural lemma can be
applied. Thus our argument leads to the conclusion that A has correlation of strength
Ω̃α(α) with some set ∆′ which is Õα(α−1)-covered, giving a density increment of ν &α 1
and rank increment of r .α α

−1, as required.
This concludes our heuristic discussion of how to obtain our improved quantitative

bounds for Roth type problems; of course, there is a fair amount of technical difficulty in
making these ideas rigorous: we must work over a general abelian group, precisely define
what kind of ‘structure’ is required for local Fourier analysis, keep track of the factors of
L(α), and so on.

3.2 Creating correlation

In this section we show how a bound for a convolution in physical space can be converted
to more useful Fourier information, which we shall use in the next section to generate
a density increment suitable for an iterative argument. The key observation is that, by
taking the Fourier transform, we have the identity

〈f1 ∗ · · · ∗ fs−1, fs〉 =
∫
f̂1(γ) · · · f̂s(γ) dγ.

In particular, a lower bound for the left hand side leads, via the triangle inequality and
Hölder’s inequality, to a lower bound on

∫ ∣∣∣f̂i(γ)
∣∣∣s dγ for some 1 ≤ i ≤ s. Provided s ≥ 3

we can exploit the cancellation inherent in Parseval’s identity to bound the contribution
to this integral from those γ such that

∣∣∣f̂i(γ)
∣∣∣ is small. In particular, if ∆ is the set of
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large Fourier coefficients of f̂i (for a suitable notion of large) then this will imply that∫
∆

∣∣∣f̂i(γ)
∣∣∣s dγ is large.

Rather than speak directly of the set of large Fourier coefficients in this section we
will use the more flexible notion of correlation, which replaces the characteristic function
of the set ∆ with the Fourier transform of an arbitrary g ∈ L1(G). For our application we
will be concerned with functions f that are balanced functions of sets; that is, f = A−αB
for some A ⊂ B with density α. This is particularly useful because a suitably strong
upper bound for the convolution of sets leads to a lower bound for the convolution of
their balanced functions.

Let B be a finite subset of G with some subset A ⊂ B with density α, and let
g ∈ L1(G). We say that A in B has correlation of strength τ , or τ -correlates, with g if,
letting A = A− αB, ∫ ∣∣∣Â(γ)

∣∣∣2 |ĝ(γ)| dγ ≥ τ |A| ‖g‖1 .

By Parseval’s identity the left hand side is at most ‖A‖2
2 ‖g‖1 = (1 − α) |A| ‖g‖1, and

hence we may always assume that τ ∈ [0, 1− α]. The importance of correlation in the
study of translation invariant equations can be traced to the work of Szemerédi [73] and
Heath-Brown [33], where the value of working with the spectrum as a whole, rather than
a single large Fourier coefficient, was first recognised.

We will prove two lemmas which convert an upper bound on the convolution of sets
to some non-trivial correlation of one of the sets. The first, which is all that will be
required to prove Theorem 2.3, is an elementary combinatorial argument. We present a
simple proof which allows us to create correlation from only a bare minimum of structural
hypotheses. We recall that X ′ is δ-sheltered by X if |(X +X ′)\X| ≤ δ |X|.

Lemma 3.1. Let B be a finite symmetric subset of G. Let A1 and As be subsets of B
with relative densities α1 and αs respectively, and let A2, . . . , As−1 be any finite subsets of
G such that A2 + · · ·+ As−1 is 2−2α-sheltered by B, where α = min(α1, αs). Then either

〈A1 ∗ A2 ∗ · · · ∗ As−1, As〉 ≥ 2−2 |A1| · · · |As| |B|−1 , (3.6)

or for some i ∈ {1, s} the set Ai in B has correlation of strength 2−2αi with A(s−2)
j for

some 1 < j < s.
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Proof. Let Ai = Ai − αiB for i ∈ {1, s}, and let f = A2 ∗ · · · ∗ As−1. By linearity of the
inner product

〈A1 ∗ f,As〉 = 〈A1 ∗ f, As〉 − α1〈B ∗ f, As〉 − αs〈A1 ∗ f,B〉+ α1αs〈B ∗ f,B〉. (3.7)

We observe that f is supported on A2 + · · ·+ As−1, and hence

|〈A1 ∗ f,B〉 − ‖f‖1 |A1|| =
∑
x 6∈B

A1 ∗ f(x)

≤ ‖f‖1 |(A2 + · · ·+ As−1 +B)\B|

≤ 2−2 ‖f‖1 |A1| ,

since A2+· · ·+As−1 is 2−2α1-sheltered by B. In particular, 〈A1∗f,B〉 ≥ (1−2−2) |A1| ‖f‖1.
By a similar argument 〈B ∗ f, As〉 ≥ (1− 2−2) |As| ‖f‖1. Furthermore, we have the trivial
bound 〈B ∗ f,B〉 ≤ ‖f‖1 |B|. Combining these bounds with (3.7) we obtain the upper
bound

〈A1 ∗ f,As〉 ≤ 〈A1 ∗ f, As〉 − 2−1α1αs ‖f‖1 |B| .

In particular, either (3.6) is true or

〈A1 ∗ f,As〉 ≤ −2−2α1αs ‖f‖1 |B| .

Taking the Fourier transform of the left hand side and applying the triangle inequality
implies that ∫ ∣∣∣f̂(γ)

∣∣∣ ∣∣∣Â1(γ)
∣∣∣ ∣∣∣Âs(γ)

∣∣∣ dγ ≥ 2−2α1αs ‖f‖1 |B| .

Applying the Cauchy-Schwarz inequality followed by Hölder’s inequality it follows that
for some i ∈ {1, s} and some 2 ≤ j ≤ s− 1 we have∫ ∣∣∣Âj(γ)

∣∣∣s−2 ∣∣∣Âi(γ)
∣∣∣2 dγ ≥ 2−2 |Aj|s−2 α2

i |B| ,

and the lemma follows from the definition of correlation.

Lemma 3.1 is the most direct way to convert an upper bound of an inner product of a
convolution to some non-trivial correlation, and is all that will be required for the proof of
Theorem 2.3. Using a new probabilistic technique due to Croot and Sisask [17], however,
Sanders [60] recently found an ingenious alternative argument, which is quantitatively
stronger for some applications. We generalised the argument of [60] to function fields and
s > 3 variables in [3]. In this thesis we will generalise the techniques further still and
prove the following, more involved, correlation lemma.
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Lemma 3.2. Let B be a finite symmetric subset of G. Let A1 and As be subsets of B
with relative densities α1 and αs respectively, and let A2, . . . , As−1 be any finite subsets of
G. Let α = min(α1, αs).

Furthermore, suppose that there are finite symmetric sets B′2, . . . , B′s−1, B
′′
2 , . . . , B

′′
s−1, B

′′′

such that for each 2 ≤ i ≤ s− 1

1. Ai ⊂ B′i with density at least α′,

2. 2`B′′′ +B′′2 + · · ·+B′′s−1 is 2−1α-sheltered by B,

3. B′i is 2−2sα-sheltered by B,

4. B′′i is 2−2α′-sheltered by B′i, and

5.
∣∣∣B′′s−1 +B′′′

∣∣∣ ≤ 2
∣∣∣B′′s−1

∣∣∣.
Then either

1. 〈A1 ∗ · · · ∗ As−1, As〉 ≥ exp
(
−25sα

−1/(s−2)
1 L(α′)

)∏s−1
i=2 |B′′i | |As|, or

2. there is a finite set D with β′(D) ≥ 2−1α′ such that A1 in B has correlation of
strength 2−2sα1 with D ∗D, or

3. for any integer ` ≥ 1 there is a finite set D with

β′′′(D) ≥ exp
(
−226+2s`2α

−1/(s−2)
1 L(α′)L(αs)

)
such that As in B has correlation of strength 2−4−sαs with D(`).

It is immediately apparent that Lemma 3.2 is more complex, both in the hypotheses
required and the conclusion delivered, than the simple Lemma 3.1. Most of the differences
are largely cosmetic, however, with regards to the quantitative bounds delivered for the
problems considered in Chapter 2. The important difference lies in the objects with which
correlation of strength ≈ α is obtained. When using the customary structural lemma of
Chang, Lemma 3.2 is more effective; it is unnecessary for our purposes, however, as we
prove a new structural lemma for which Lemma 3.1 is sufficient.

We illustrate this by considering, for simplicity, the case s = 3. The structural lemma
of Chang (which we will state explicitly in the following section) can be used to convert
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correlation of strength Ω(α) with D(r), where D is contained inside some structured set
with density δ, into a density increment of strength Ω(1) on a set with relative density
|X ′| / |X| ≈ exp(−α−2/rL(δ)).

Lemma 3.1 delivers correlation with a set D of density Ω(α), and hence using Chang’s
lemma would deliver a density increment on a structured subset with relative density
exp(−α−2L(α)). Lemma 3.2, however, delivers correlation either with D(2), where D is a
set of density Ω(α), or with D(`) where D is a set of density

δ � exp(−O(`2α−1L(α)2))

and ` ≥ 1 is any integer. In particular, using Chang’s lemma this yields a density
increment on a structured subset with relative density either exp(−α−1L(α)) or

exp(−α−1−2/``2L(α)2) ≈ exp(−α−1L(α)4),

if we choose ` ≈ L(α). Thus, when using Chang’s lemma, Lemma 3.2 is superior
to Lemma 3.1 by a factor of almost α−1. This improvement led to the quantitative
improvements of Sanders [60], which were generalised in [3].

We include a proof of Lemma 3.2 at the end of this chapter for this reason, and because
the tools required offer an alternative point of view. Before that, however, we prove a new
structural lemma which is an alternative to Chang’s lemma, and which means that the
much simpler Lemma 3.1 will suffice. This is particularly beneficial in that fewer technical
hypotheses are required, which makes the task of constructing chains in Chapter 2 far
simpler.

Roughly speaking, our new structural result, stated below as Theorem 3.4, can be
used to convert correlation of strength Ω(α) with D(`), where D is contained inside
some structured set with density δ, into a density increment of strength Ω(1) on a set
with relative density |X ′| / |X| ≈ exp(−α−1/`L(δ)). Combining this with Lemma 3.1, for
example, results in a density increment on a set with relative density exp(−α−1L(α)).
An application of Lemma 3.2, in contrast, would yield a density increment on a set with
relative density either exp(−α−1/2L(α)) or

exp(−α−1−1/``2L(α)2) ≈ exp(−α−1L(α)4),

making the optimal choice of ` ≈ L(α). Thus a direct application of Lemma 3.1 is
quantitatively better than the worst result of applying Lemma 3.2.
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3.3 From correlation to density increment

We first state our new structural result for spectra and show how this can be combined
with Lemma 3.1 to prove Theorem 2.3. We say that ∆ is d-covered by Λ if there exists a
finite set Γ ⊂ Ĝ of size at most d such that ∆ ⊂ Λ− Λ + 〈Γ〉, where

〈Γ〉 =

∑
γ∈Γ

εγγ : εγ ∈ {−1, 0, 1}

 .
We first recall, for comparison, the structural result of Chang. This is proved by

Chang [13] in the special case when G is a finite group and B = G. The following more
general version can be proved using the technique of Shkredov [70]. We will not require
this result in our method.

Theorem 3.3. Let B be a finite subset of G. Let f ∈ L1(B) and δ = ‖f‖1 ‖f‖
−1
∞ |B|

−1.
The set ∆η(f) is d-covered by 2∆exp(−8L(δ)L(η))(B) for some d� η−2L(δ).

Our new structural result shows that any function supported on the spectrum of large
Fourier coefficients has a large proportion of its weight supported on a subset which is
more efficiently covered than the full spectrum; Theorem 3.3, on the other hand, manages
to cover the entire spectrum, but less efficiently.

Theorem 3.4. Let B be a finite subset of G. Let f ∈ L1(B) and δ = ‖f‖1 ‖f‖
−1
∞ |B|

−1.
For any function ω : Ĝ→ R+ supported on ∆η(f) there exists ∆′ ⊂ ∆η(f) such that∫

∆′
ω(γ) dγ ≥ 2−10η

∫
ω(γ) dγ,

and ∆′ is d-covered by 2∆exp(−8L(δ)L(η))(B) for some d ≤ 211η−1L(δ).

For a more easily digestible version one should take B = G as a finite group, so that
∆exp(−8L(δ)L(η))(B) = {0}. For many applications, however, one must work with sets which
are not finite groups and have a much weaker degree of additive structure, for which the
generality of Theorem 3.4 as we have stated it will be necessary.

We shall also need the following technical lemma which gives a convenient relationship
between shelter and control on a spectrum. This simple argument was used by Green and
Konyagin [29], in the proof of their Lemma 3.6.
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Lemma 3.5. Let B and B′ be finite subsets of G and ε, δ ∈ (0, 1]. If B′ is a symmetric
set which is δε-sheltered by B then B′ has 2δ-control of ∆ε(B).

Proof. For any γ ∈ Ĝ and x ∈ G

(1− γ(x))B̂(γ) =
∑
y∈B

γ(y)−
∑

y∈B+x
γ(y)

=
∑

y∈B\(B+x)
γ(y)− γ(x)

∑
y∈B\(B−x)

γ(y).

By the triangle inequality,

|1− γ(x)|
∣∣∣B̂(γ)

∣∣∣ ≤ |B\(B + x)|+ |B\(B − x)| .

In particular, if γ ∈ ∆ε(B) and x ∈ B′ then

|1− γ(x)| ε |B| ≤ 2 |(B′ +B)\B| ≤ 2δε |B| ,

so that |1− γ(x)| ≤ 2δ and the lemma follows.

We now turn to the task of converting a hypothesis of correlation of a given set to the
conclusion that this set has increased density on some structured subset. As promised we
will use Theorem 3.4 to do this efficiently. If Theorem 3.3 is used instead then a similar
but quantitatively weaker statement can be proved, with τ−1/r below replaced by τ−2/r.

Lemma 3.6. Let r ≥ 1 be any integer. Let B and B′ be finite symmetric subsets of G
and A ⊂ B with density α. Let f ∈ L1(B′) and δ = ‖f‖1 ‖f‖

−1
∞ |B′|

−1.
Suppose that A in B has correlation of strength τ with f (r). Then there exists a finite

set Γ ⊂ Ĝ of size |Γ| ≤ 213τ−1/rL(δ) such that if B′′ is a finite symmetric subset of G
such that

1. B′′ has 2−2-control of 〈Γ〉,

2. B′′ is 2−30r2
α-sheltered by B, and

3. B′′ is exp(−25rL(τ)L(δ))-sheltered by B′,

then ‖A ∗B′′‖∞ ≥ (α + 2−15r2
τ) |B′′|.
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Proof. Without loss of generality we may suppose that ‖f‖1 = 1. If the conclusion holds
for τ then it also holds for any τ ′ ≤ τ so we may, without loss of generality, assume that∫ ∣∣∣Â(γ)

∣∣∣2 ∣∣∣f̂(γ)
∣∣∣r dγ = τ |A| .

Let η = (τ/2)1/r. By Parseval’s identity∫
Ĝ\∆η(f)

∣∣∣Â(γ)
∣∣∣2 ∣∣∣f̂(γ)

∣∣∣r dγ ≤ ηr ‖A‖2
2 ≤ 2−1τ |A| ,

and hence ∫
∆η(f)

∣∣∣Â(γ)
∣∣∣2 ∣∣∣f̂(γ)

∣∣∣r dγ ≥ 2−1τ |A| .

For all i ≥ 0 let ∆i = ∆̃2iη(f), so that
∑
i≥0

(
2i+1η

)r ∫
∆i

∣∣∣Â(γ)
∣∣∣2 dγ ≥ 2−1τ |A| .

We now apply Theorem 3.4 individually to each i ≥ 0 with the weight functions ωi defined
by ωi(γ) =

∣∣∣Â(γ)
∣∣∣2 for γ ∈ ∆i and ωi(γ) = 0 otherwise. Let ∆′i be the sets given by

Theorem 3.4, so that

(2iη)r−1
∫

∆′i

∣∣∣Â(γ)
∣∣∣2 dγ ≥ 2−10(2iη)r

∫
∆i

∣∣∣Â(γ)
∣∣∣2 dγ.

It follows that ∑
i≥0

(2iη)r−1
∫

∆′i

∣∣∣Â(γ)
∣∣∣2 dγ ≥ 2−r−11τ |A| .

By Hölder’s inequality

∑
i≥0

(2iη)r−1
∫

∆′i

∣∣∣Â(γ)
∣∣∣2 dγ ≤

∑
i≥0

(2iη)r
∫

∆i

∣∣∣Â(γ)
∣∣∣2 dγ

1−1/r ∑
i≥0

∫
∆′i

∣∣∣Â(γ)
∣∣∣2 dγ

1/r

.

Furthermore,
∑
i≥0

(2iη)r
∫

∆i

∣∣∣Â(γ)
∣∣∣2 dγ ≤

∫ ∣∣∣Â(γ)
∣∣∣2 ∣∣∣f̂(γ)

∣∣∣r dγ = τ |A| .

It follows that, if ∆′ = ∪i≥0∆′i, then∫
∆′

∣∣∣Â(γ)
∣∣∣2 dγ ≥ 2−r2−11rτ |A| .
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Furthermore, Theorem 3.4 ensures that for each i ≥ 0 there is a finite set Γi ⊂ Ĝ of
size |Γi| ≤ 211−iη−1L(δ) such that, if Λ = ∆exp(−24rL(τ)L(δ))(B), then

∆′i ⊂ 〈Γi〉+ 4Λ.

Hence if Γ = ∪i≥0Γi then |Γ| ≤ 211η−1L(δ)∑i≥0 2−i ≤ 212η−1L(δ) and

∆′ ⊂ 〈Γ〉+ 4Λ.

Suppose that B′′ has 2−2-control of 〈Γ〉 and 2−4-control of Λ. It follows that it has
2−1-control of ∆′, so that

∣∣∣B̂′′(γ)
∣∣∣ ≥ |B′′| /2 for all γ ∈ ∆′. Hence

‖A ∗B′′‖2
2 =

∫ ∣∣∣Â(γ)
∣∣∣2 ∣∣∣B̂′′(γ)

∣∣∣2 dγ ≥ 2−r2−11r−2τ |A| |B′′|2 .

Recalling that A = A− αB and expanding out the left hand side yields

‖A ∗B′′‖2
2 + α2 ‖B ∗B′′‖2

2 − 2α〈B ∗B′′, A ∗B′′〉 ≥ 2−r2−11r−2τ |A| |B′′|2 .

By the Cauchy-Schwarz inequality, since A ∗B′′ is supported on B +B′′,∣∣∣〈B ∗B′′, A ∗B′′〉 − |A| |B′′|2∣∣∣ ≤ ‖A ∗B′′‖2 ‖B ∗B
′′ − |B′′| (B +B′′)‖2

≤ |B′′| |A|1/2 ‖B ∗B′′ − |B′′| (B +B′′)‖2 .

Furthermore, since B′′ is 2−30r2
α-sheltered by B we have

‖B ∗B′′ − |B′′| (B +B′′)‖2
2 = ‖B ∗B′′‖2

2 − 2 |B| |B′′|2 + |B′′|2 |B +B′′|

≤ |B′′|2 |(B +B′′)\B|

≤ 2−30r2 |A| |B′′| .

It follows that
〈B ∗B′′, A ∗B′′〉 ≥ (1− 2−15r2) |A| |B′′|2

and hence, using the trivial bound ‖B ∗B′′‖2
2 ≤ |B| |B′′|

2, it follows that

‖A ∗B′′‖2
2 ≥ (α |A|+ 2−15r2

τ |A|) |B′′|2 .

The left hand side is at most |A| |B′′| ‖A ∗B′′‖∞ and the lemma follows since the hypothesis
of exp(−25rL(τ)L(δ))-shelter implies 2−4-control of Λ by Lemma 3.5.
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Lemma 3.6 is the engine by which we will convert correlation to a density increment
which can then be iterated. Coupling it with the correlation-producing Lemma 3.1 yields
the following corollary.

Corollary 3.7. Let B and B′2, . . . , B′s−1 be finite symmetric subsets of G such that 0 ∈ B′i
for 1 < i < s. Let A1 and As be subsets of B with densities α1 and αs respectively,
and for 1 < i < s let Ai ⊂ B′i with density at least α′. Suppose that B′2 + · · · + B′s−1 is
2−30s2

α-sheltered by B, where α = min(α1, αs). Then either

〈A1 ∗ A2 ∗ · · · ∗ As−1, As〉 ≥ 2−2 |A1| · · · |As| |B|−1 , (3.8)

or there exists a finite set Γ ⊂ Ĝ of size |Γ| ≤ 215α−1/(s−2)L(α′) and 1 < i < s such that
if B′′ ⊂ B′i is a symmetric set such that

1. B′′ has 2−2-control of 〈Γ〉 and

2. B′′ is exp(−26sL(α)L(α′))-sheltered by B′i,

then ‖Aj ∗B′′‖∞ ≥ (1 + 2−15s2)αj |B′′| for some j ∈ {1, s}.

Proof. This is an immediate consequence of Lemmata 3.1 and 3.6. In particular, it is
simple to check that the hypotheses are strong enough to provide the required amount of
shelter; thus, for instance, since B′′ ⊂ B′i and B′i is 2−26s2

α-sheltered by B it certainly
follows that B′′ is 2−30s2

α-sheltered by B.

For the proof of Theorem 2.3 it remains to apply Corollary 3.7 to the case when
Ai = ci ·A (or rather, some subset of ci ·A chosen such that the hypotheses are met) and
frame the hypotheses using the language of chains from Chapter 2. We recall the key
definitions from Chapter 2: a good pair for (X, c; δ) is a pair (B̃, B̃′) of finite symmetric
subsets of G, each containing 0, such that

1. the sets c1 · B̃, cs · B̃, and c1cs · B̃′ are all δ-sheltered by X, and

2. c2 · B̃′ + · · ·+ cs−1 · B̃′ is δ-sheltered by B̃.

IfB is a collection of finite symmetric subsets of G, each containing 0, thenB is permissible
for (X, c; δ, d) if there exists some pair of sets (B̃, B̃′) which is a good pair for (X, c; δ)
such that
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1. c1cs · B̃′, c1 · B̃, cs · B̃ are all members of B and

2. for each finite Γ ⊂ Ĝ of size at most d and each 2 ≤ i ≤ s − 1, the collection
B contains c1csci · X ′ for some X ′ ⊂ B̃′ which has (4 |Γ|)−1-control of Γ and is
δ-sheltered by B̃′.

Finally, we recall that a trivial solution to the equation

c1x1 + · · ·+ csxs = 0 (3.9)

is one where x1 = · · · = xs.

Lemma 3.8. Let c ∈ (R∗)s be a commutative s-tuple such that c1 + · · ·+ cs = 0. Let X
be a finite symmetric set and let A ⊂ X with density α. Suppose that A has only trivial
solutions to (3.9) and let

δ = exp(−214s2L(α)2) and d = 215α−1/(s−2)L(α).

Then if B is permissible for (X, c; δ, d) either

1. there exists X ′ ∈ B such that α2 ≤ 24 |X ′|−1, or

2. there exist X ′ ∈ B and A′ ⊂ X ′ with density α′ such that A′ ⊂ a · A− x for some
a ∈ R∗ which commutes with c and x ∈ G, and

α′ ≥ α(1 + 2−20s2).

Proof. Let B be a fixed collection of finite symmetric sets which is permissible for
(X, c; δ, d), and let (B̃, B̃′) be some associated good pair for (X, c; δ). Let B = c1cs · B̃
and B′ = c1cs · B̃′. Let ε > 0 be some constant to be chosen later. We observe that if Y
is εα-sheltered by X then

|A| |Y | −
∑
x∈X

A ∗ Y (x) =
∑
x 6∈X

A ∗ Y (x) ≤ |Y | |(X + Y )\X| ≤ ε |A| |Y | .

In particular, provided δ ≤ εα,
∑
x∈X

(
A ∗ (c1 · β̃)(x) + A ∗ (cs · β̃)(x) + A ∗ β′(x)

)
≥ 3(1− ε) |A| ,
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whence there exists some x ∈ X such that

A ∗ (c1 · β̃)(x) + A ∗ (cs · β̃)(x) + A ∗ β′(x) ≥ 3(1− ε)α.

An easy calculation shows that either one summand has size at least (1 + ε)α, and we
are in the second case of the lemma provided ε ≥ 2−20s2 , or all summands are at least
(1− 5ε)α, so we henceforth assume that we have fixed an x ∈ X such that

(1− 5ε)α ≤ A ∗ (c1 · β̃)(x), A ∗ (cs · β̃)(x), A ∗ β′(x) ≤ (1 + ε)α.

Let
A1 = c1 · (A− x) ∩B and As = −cs · (A− x) ∩B.

Since c1 and c1cs belong to R∗ they preserve the cardinalities of sets of G, and hence

α1 = |A1|
|B|

=

∣∣∣c1 · (A− x) ∩ c1cs · B̃
∣∣∣∣∣∣B̃∣∣∣ = A ∗ (cs · β̃)(x).

Similarly, αs = A ∗ (c1 · β̃)(x), and hence (1− 5ε)α ≤ α1, αs ≤ (1 + ε)α. Furthermore, if
we let

Ai = ci · (A− x) ∩ ci ·B′ for 2 ≤ i ≤ s− 1

then α′i = |Ai| / |ci ·B′| ≥ (1− 5ε)α ≥ α/2, say.
We are now in a position to apply Corollary 3.7. We certainly have that δ ≤

2−30s2(1−5ε)α, so that the second condition of a good pair ensures that c2 ·B′+· · ·+cs−1 ·B′

is 2−30s2 min(α1, αs)-sheltered by B, as required. If (3.8) holds then

〈A1 ∗ · · · ∗ As−1, As〉 ≥ 2−2 |A1| · · · |As| |B|−1 .

By hypothesis, however, A has only trivial solutions to c1x1 + · · ·+ csxs = 0, and hence,
since c1 + · · ·+ cs = 0, a solution to a1 + · · ·+ as−1 = as with ai ∈ Ai is fixed whenever
we have fixed a2, . . . , as−1, and so

〈A1 ∗ · · · ∗ As−1, As〉 ≤ |A2| · · · |As−1| .

In particular, 22 ≥ |A1| |As| |B|−1 ≥ 22α2 |B| and the first alternative holds.
Otherwise, we are in the second case of Corollary 3.7, and hence there is some Γ ⊂ Ĝ

of size |Γ| ≤ d and 1 < i < s such that if B′′ ⊂ ci · B′ is a symmetric set which has
2−2-control of 〈Γ〉 and is δ-sheltered by ci ·B′, then

‖Aj ∗ β′′‖∞ ≥ (1 + 2−15s2)(1− 5ε)α ≥ (1 + 2−16s2)α,
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provided ε ≤ 2−15s2−3, say, for some j ∈ {1, s}. We let A′ = (Ai − y) ∩ B′′ for an
appropriate y ∈ G; it remains to verify that we can choose some B′′ ∈ B to satisfy the
previous conditions.

By definition there is some X ′ ⊂ B̃′ such that c1csci · X ′ ∈ B, X ′ has 2−2-control
of Γ · c1csci, and X ′ is δ-sheltered by B̃′. Since c1csci · B̃′ = ci · B′ it suffices to take
B′′ = c1csci ·X ′ and the proof is complete.

We now come at last to the proof of Theorem 2.3. We recall that a chain X0, . . . ,XK

satisfies DI(δ, d; c) if for every X ∈ Xi−1 the collection Xi contains some collection
permissible (X, c; δ, d(i)). Of course, the definition of a chain has been chosen to precisely
fit the hypotheses, and so Theorem 2.3 will be an immediate corollary of Lemma 3.8. For
convenience, we restate Theorem 2.3 below.

Theorem 2.3. There exists a constant C(s) > 1, depending only on s, such that the
following holds. Let c ∈ (R∗)s be a commutative s-tuple such that c1 + · · ·+ cs = 0. Let
X ⊂ G be a finite symmetric set and A ⊂ X with density α. Let

δ = exp(−CL(α)2) and r(i) = C(1 + C−1)−i/(s−2)α−1/(s−2)L(α) for i ≥ 0.

If A contains only trivial solutions to (2.1) then there exists an integer 0 ≤ K �s L(α)
such that if X is a chain from X of length K which satisfies DI(δ, r; c) then there exists
X ′ ∈ X such that

|X ′|−1 � α2.

Proof. We let C > 1 be some constant to be determined later. Let K ≥ 0 be maximal
such that there exists at least one chain from X of length K which satisfies DI(δ, r; c),
and for every such chain X0, . . . ,XK and 0 ≤ i ≤ K there exists some Xi ∈ Xi and
Ai ⊂ Xi with density

αi = |Ai| / |Xi| ≥ (1 + C−1)iα,

where Ai ⊂ a · A− x for some a ∈ R∗ which commutes with c and x ∈ G. Since αi ≤ 1
for 0 ≤ i < K it follows that K �C L(α).

If there is no chain of length K+1 which satisfies DI(δ, r; c) then the conclusion of the
theorem holds vacuously, so we may suppose that such a chain exists. Let X0, . . . ,XK+1

be some such chain. By construction there exists some X ′ ∈ XK and A′ ⊂ X ′ such that
α′ ≥ (1 +C−1)Kα and A′ ⊂ a ·A− x for some a ∈ R∗ which commutes with c and x ∈ G.
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Crucially, since c1 + · · ·+ cs = 0, this implies that any non-trivial solution to (3.9) with
the variables in A′ can be lifted to a non-trivial solution with the variables in A. In
particular, A′ has only trivial solutions to (3.9), and so we can apply Lemma 3.8.

Since the chain satisfies DI(δ, r; c) the collection XK+1 contains some B which is
permissible for

(X ′, exp(−214s2L(α)2), c, 2−15α
−1/(s−2)
i L(α)),

provided we choose C sufficiently large. By Lemma 3.8 either there exists some X ′′ ∈ XK+1

such that
α2 ≤ α′2 ≤ 24 |X ′|−1

,

and the theorem holds, or there exist X ′′ ∈ XK+1 and A′′ ⊂ X ′′ with density α′′ such that
A′′ ⊂ a · A′ − x for some a ∈ R∗ which commutes with c and x ∈ G, and

α′′ ≥ α′(1 + 2−20s2) ≥ (1 + C−1)K+1α,

provided C ≥ 220s2 . Since X0, . . . ,XK+1 was an arbitrary chain from X of length K +
1 which satisfies DI(δ, r; c) this contradicts the maximality of K, and the proof is
complete.

3.4 Structure of spectra

In this section we prove the result which is at the heart of our quantitative improvements
to Roth’s theorem: a new result about the additive structure of spectra, that is, sets of
large Fourier coefficients of a given function. This has already been stated as Theorem 3.4.
We will first prove a finitary version and then show how Theorem 3.4 follows.

The proof is as follows. We first obtain an upper bound for the additive energy of
any set without the required additive structure using an argument of Bateman and Katz
[1], and then combine this with a lower bound for the additive energy of spectra due to
Shkredov [69] to deduce that spectra possess the required structure.

The structure in question is that of being efficiently covered by another set; namely,
we say that a finite set X is d-covered if there exists a set X ′ of size at most d such that
X ⊂ 〈X ′〉, where

〈X ′〉 =

∑
x∈X′

εxx : εx ∈ {−1, 0, 1} for all x ∈ X ′

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and 〈∅〉 = {0}. The fact that the spectra of sets can be efficiently covered was first
observed by Chang [13], who proved that if G is finite and A ⊂ G with density α then
∆η(A) is d-covered for some d � η−2L(α). This should be compared with the trivial
bound |∆η(A)| ≤ η−2α−1, which follows from Parseval’s identity. In other words, in
applications where one can pass to a covering of a set rather than the set itself one can
save a factor of α−1L(α)−1 over the trivial bound.

The conclusion of Chang’s lemma cannot be quantitatively improved, as demonstrated
by Green [27], who showed that for a wide range of α and η one can construct A ⊂ Z/NZ
of density α such that ∆η(A) cannot be d-covered by any d� η−2L(α); these constructions
were generalised and extended by Shkredov [68].

The new structural result proved in this section shows that these quantitative bounds
can be improved if we are prepared to pass to some dense subset of ∆η(A); namely,
there exists some ∆′ ⊂ ∆η(A) such that |∆′| � η |∆η(A)| and ∆′ is d-covered for some
d� η−1L(α). For the applications to Roth’s theorem, as shown in the previous section,
one can pass to a dense subset without cost, and hence this result can be used as a
quantitatively superior version of Chang’s lemma.

Due to the iterative nature of the density increment strategy we shall in fact require
the more general form of Theorem 3.4, which applies to any function f ∈ L1(G) and has
a more flexible notion of density. On a first read-through, however, it is simplest to take
f in what follows to be the characteristic function of some set, G to be a finite abelian
group and B = G.

We first require some technical definitions. For any Γ ⊂ Ĝ, weight function ω : Ĝ→ R+

with finite support, and integer m ≥ 1 we define the additive energy as

E2m(ω,Γ) =
∑

γ1,...,γ′m

ω(γ1) · · ·ω(γ′m)Γ
 m∑
i=1

γi −
m∑
j=1

γ′j

 .
Similarly, for any integers t1, t2 ≥ 1 we define the restricted energy as

E]
t1,t2(ω,Γ) =

∑
∆1∈(Ĝt1),∆2∈(Ĝt2)

∆1∩∆2=∅

∏
γ∈∆1∪∆2

ω(γ)Γ
 ∑
γ∈∆1

γ −
∑
γ′∈∆2

γ′

 ;

since ω has finite support both of these sums are well-defined, and there are no issues with
convergence. For any ω and Γ we define E0(ω,Γ) = E]

0(ω,Γ) = 1. Observe that E and
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E] differ, not only in the restriction on repeating elements, but also in that the former is
sensitive to permutations of γi. We will provide a connection between the energy and
restricted energy in Lemma 3.10 below.

We say that ∆ is Γ-dissociated if for all k ≥ 1 and λ ∈ Ĝ there are at most 2k many
pairs ∆1,∆2 of disjoint subsets of ∆ such that |∆1 ∪∆2| = k and

∑
γ∈∆1

γ −
∑
γ′∈∆2

γ′ ∈ Γ + λ.

This should be compared with the usual notion of dissociativity in arithmetic combinatorics,
which is equivalent to the property of having no pair of disjoint subsets ∆1,∆2 ⊂ ∆ with∑
γ∈∆1 γ −

∑
γ′∈∆2 γ

′ = 0.
Finally, we say that S has Γ-dimension d if d is the size of the largest Γ-dissociated

subset of S. We observe that the dimension of a non-empty set is always at least 1 since
any singleton set is trivially Γ-dissociated for all Γ ⊂ Ĝ. Furthermore, if ∆ is Γ-dissociated
then it is also Γ′-dissociated for any translate Γ′ of Γ.

If a set has a very large dimension then almost all of the set is dissociated, and hence
one would expect few additive relations between its elements, so it should have small
additive energy. The following lemma verifies this intuition.

Lemma 3.9. Let Γ ⊂ Ĝ. If a finite set S ⊂ Ĝ has Γ-dimension |S| − k then for all
t1, t2 ≥ 0,

E]
t1,t2(S,Γ) ≤ 4k2t1+t2 .

Proof. Let S = S0 t S1 where S0 is Γ-dissociated and |S1| = k. By separating the
contribution from the subsets of S1 we obtain the estimate

E]
t1,t2(S,Γ) =

∑
∆1∈(St1),∆2∈(St2)

∆1∩∆2=∅

Γ
 ∑
γ∈∆1

γ −
∑
γ′∈∆2

γ′



≤
∑

0≤r1≤t1
0≤r2≤t2

(
k

r1

)(
k

r2

)
sup
λ

∑
∆1∈( S0

t1−r1),∆2∈( S0
t2−r2)

∆1∩∆2=∅

Γ
 ∑
γ∈∆1

γ −
∑
γ′∈∆2

γ′ + λ

 .

Since S0 is Γ-dissociated, however, the inner summand is bounded above by 2t1+t2 and
the lemma follows.
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For the main result of this section we need to convert a conclusion about the restricted
additive energy to the full additive energy, for which the following lemma will suffice.

Lemma 3.10. Let Γ ⊂ Ĝ and let ω : Ĝ→ R+ be some weight function with finite support
and ω2 =

(∑
γ ω(γ)2

)1/2
. Then for any m ≥ 2,

E2m(ω,Γ) ≤ 24m(m!)2ω2m
2

∑
0≤t1,t2≤m

ω−t1−t22
((m− t1)!(m− t2)!)1/2 sup

λ
E]
t1,t2(ω,Γ + λ).

Proof. We divide the range of summation of E2m according to the size of the subsets of
{γ1, . . . , γm} and {γ′1, . . . , γ′m} consisting of elements that occur with multiplicity 1. This
leads to the upper bound

E2m(ω,Γ) ≤
∑

0≤l1,l2≤m
Gm−l1(ω)Gm−l2(ω)

(
m

l1

)(
m

l2

)
sup
λ
Fλ(l1, l2), (3.10)

where

Fλ(l1, l2) =
∑

γ1,...,γ′l2
γi 6=γj γ′i 6=γ

′
j i 6=j

ω(γ1) · · ·ω(γ′l2)Γ
 l1∑
i=1

γi −
l2∑
j=1

γ′j − λ



and

Gk(ω) =
∗∑
∆

∏
γ∈∆

ω(γ) ≤ k!
(bk/2c)!

(∑
γ

ω(γ)2
)k/2

, (3.11)

the first sum being restricted to those ordered k-tuples ∆ ∈ Ĝk where each element occurs
with multiplicity at least 2. The sum Fλ(l1, l2) is almost a dilated copy of the restricted
energy E]

l1,l2 except that it lacks the restriction γi 6= γ′j for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2.
To introduce this we partition Fλ(l1, l2) according to the number of common elements
between the γi and γ′i; thus

Fλ(l1, l2) ≤
min(l1,l2)∑

i=0

(
l1
i

)(
l2
i

)
i!ω2i

2 (l1 − i)!(l2 − i)!E]
l1−i,l2−i(ω,Γ + λ). (3.12)

Combining (3.10), (3.11) and (3.12) and simplifying the expression shows that E2m(ω,Γ)
is at most

(m!)2ω2m
2

∑
0≤l1,l2≤m

min(l1,l2)∑
i=0

ω2i−l1−l2
2

i!(b(m− l1)/2c)!(b(m− l2)/2c)! sup
λ
E]
l1−i,l2−i(ω,Γ + λ).
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Relabelling t1 = l1 − i and t2 = l2 − i this is at most

(m!)2ω2m
2

∑
0≤t1,t2≤m

ω−t1−t22 sup
λ
E]
t1,t2(ω,Γ + λ)f(m, t1, t2),

where

f(m, t1, t2) =
m−max(t1,t2)∑

i=0

1
i!(b(m− t1 − i)/2c)!(b(m− t2 − i)/2c)!

.

Finally, a tedious calculation using the elementary inequality n!/(bn/2c!)2 ≤ 2(n+ 1)1/22n,
valid for all n ≥ 0, shows that the inner sum is at most 24m((m− t1)!(m− t2)!)−1/2 and
the lemma follows.

The final technical lemma of this section provides a relationship between covering and
dimension that will be important in the proof of Lemma 3.12.

Lemma 3.11. Let Γ ⊂ Ĝ be a symmetric set. If ∆ ⊂ Ĝ has Γ-dimension r then there is
a partition Ĝ = Λ0 t Λ1 where Λ0 is 2r-covered by Γ and for all γ ∈ Λ1 the set ∆ ∪ {γ}
has Γ-dimension r + 1.

Proof. By hypothesis we can decompose ∆ as ∆0 t∆1 where ∆0 is Γ-dissociated and
|∆0| = r. Let ∆′ be the set of all γ ∈ Ĝ such that ∆0 ∪ {γ} is not Γ-dissociated. We
claim that a suitable decomposition is provided by Λ0 = ∆′ ∪∆0 and Λ1 = Ĝ\Λ0.

Firstly, let γ ∈ Λ1. By construction the set ∆0 ∪ {γ} is Γ-dissociated, and hence
∆ ∪ {γ} has, by definition, Γ-dimension of at least r + 1, since |∆0 ∪ {γ}| = r + 1. It
remains to show that Λ0 is 2r-covered by Γ; for this, it suffices to show that

∆0 ∪∆′ ⊂ Γ− Γ + 〈∆0〉+ 〈∆0〉.

This is obvious for ∆0. Let γ ∈ ∆′. By construction ∆0 ∪ {γ} is not Γ-dissociated,
and hence there exists k ≥ 1 and λ ∈ Ĝ such that there are more than 2k many triples
(ε,∆′1,∆′2) such that ε ∈ {−1, 0, 1}, the sets ∆′1 and ∆′2 are disjoint subsets of ∆0 with
|∆′1 ∪∆′2|+ |ε| = k, and

εγ +
∑
γ′1∈∆′1

γ′1 −
∑
γ′2∈∆′2

γ′2 ∈ Γ + λ.

If there exists at least one such triple with ε = 0 and at least one with ε 6= 0 then it is
easy to check that this implies that γ ∈ Γ − Γ + 〈∆0〉 − 〈∆0〉 as required. If ε ≡ 0 for
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all such triples then this contradicts the Γ-dissociativity of ∆0. Hence we can assume
that ε ∈ {−1, 1} for all such triples; this is clearly impossible for k = 1, and for k > 1 we
observe that by the pigeonhole principle there are strictly more than 2k−1 such triples
with identical ε. This, however, is another contradiction to the Γ-dissociativity of ∆0,
considering the translate Γ + λ− εγ. Thus γ ∈ Γ− Γ + 〈∆0〉 − 〈∆0〉 as required, and the
proof is complete.

The following lemma is crucial, and uses random sampling to prove a hereditary
version of our earlier intuition: namely, if a set is such that every large subset is not
efficiently covered then we must have particularly small additive energy. The argument is
a variant on that used by Bateman and Katz in [1, Section 5]. There, however, they only
wish to bound the 8-fold additive energy, whereas for our purposes we shall need to deal
with the 2m-fold additive energy where m→∞, and hence we have taken care to make
the dependence on m explicit.

We treat the constants in this argument, as in the rest of this chapter, quite crudely;
it is certainly possible to improve them, but such improvements would have a negligible
effect on the main results.

Lemma 3.12. Let Γ ⊂ Ĝ be a symmetric set and ω : Ĝ→ R+ be a function with finite
support. Let ω2 =

(∑
γ ω(γ)2

)1/2
. Let d ≥ n ≥ 2 and d/4 ≥ m ≥ 2 be integers chosen

such that ω2 ≤ m1/2d−1ω1. Then either there is a finite set ∆ ⊂ Ĝ such that
∑
γ∈∆

ω(γ) ≥ n

d

∑
γ

ω(γ)

and ∆ is 2d-covered by Γ, or

E2m(ω,Γ) ≤ 213m+6nm2md−2m
(∑

γ

ω(γ)
)2m

.

Proof. Without loss of generality we may suppose that ∑ω(γ) = 1. We first observe that
either we are in the first case, or every subset ∆ ⊂ Ĝ which is 2d-covered by Γ satisfies∑
γ∈∆ ω(γ) ≤ nd−1, which we shall assume henceforth.
Let S ⊂ Ĝ be a random set of size at most d chosen by selecting d elements of Ĝ at

random, where we choose γ ∈ Ĝ with probability ω(γ). We claim that for k ≥ 0 the set
S has Γ-dimension d− k with probability at most nk/k!.
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Suppose that we have selected d′ ≤ d elements of S, say S ′, and that S ′ has Γ-dimension
r. By Lemma 3.11 we can partition Ĝ = Λ0 t Λ1 such that Λ0 is 2d-covered by Γ and for
all γ ∈ Λ1 the set S ′ ∪ {γ} has Γ-dimension of at least r + 1. Thus, in our model,

P(dim(S ′ ∪ {γ}) ≤ dim(S ′)) ≤
∑
γ∈Λ0

ω(γ) ≤ n

d
,

since Λ0 is 2d-covered by Γ. From this estimate, combined with the trivial observations
that the empty set has Γ-dimension 0 and that Γ-dimension is non-decreasing, it follows
that the probability that S has Γ-dimension d− k is at most the probability that k events
with probability at most n/d occur in d independent trials, which is at most(

d

k

)
nkd−k ≤ nk/k!

as required. By Lemma 3.9 it follows that for all λ ∈ Ĝ and integers t1, t2 ≤ m we have

EE]
t1,t2(S,Γ + λ) ≤ 4m

∞∑
k=0

(4n)k
k! = 4me4n.

Let 1 ≤ k ≤ 2m. For any distinct γ1, . . . , γk ∈ Ĝ the probability that γ1, . . . , γk ∈ S is at
least

k!
(
d

k

)
ω(γ1) · · ·ω(γk)

(
1−

k∑
i=1

ω(γi)
)d−k

.

Since k ≤ d/2 we have k!
(
d
k

)
≥ (d/2)k. Furthermore, by the Cauchy-Schwarz inequality

k∑
i=1

ω(γi) ≤ (2m)1/2ω2 ≤ 2md−1 ≤ 1/2,

so that the second factor is at least

exp
(
−d

k∑
i=1

ω(γi)
)
≥ e−2m.

It follows that the probability that γ1, . . . , γk ∈ S is at least 2−5mdkω(γ1) · · ·ω(γk). By
linearity of expectation, assuming t1 + t2 ≤ m,

EE]
t1,t2(S,Γ + λ) ≥ 2−5mdt1+t2E]

t1,t2(ω,Γ + λ),
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and so, for all λ ∈ Ĝ and 0 ≤ t1, t2 ≤ m,

E]
t1,t2(ω,Γ + λ) ≤ 27me4nd−t1−t2 .

From Lemma 3.10 it follows that

E2m(ω,Γ) ≤ 211me4nm!ω2m
2

 ∑
0≤t≤m

(m!)1/2(ω−1
2 d−1)t

((m− t)!)1/2

2

.

For brevity let r = ω−2
2 d−2 ≥ m−1. By the Cauchy-Schwarz inequality the inner factor is

at most

(m+ 1)
∑

0≤t≤m

m!
(m− t)!r

t ≤ (m+ 1)
∑

0≤t≤m
(erm)t ≤ (m+ 1)2(erm)m,

say. In particular

E2m(ω,Γ) ≤ 213me4nm2mω2m
2 rm = 213me4nm2md−2m,

and the lemma follows.

Lemma 3.12 is quite general, and although we have stated it for the dual group Ĝ
the proof is valid for any abelian group. We shall apply it when ω is supported on
the spectrum of some function, which is useful because there is a powerful lower bound
on the additive energy of such sets, due originally to Shkredov [69]. In that paper it
was shown that if G is a finite group and A ⊂ G with density α and ∆ ⊂ ∆η(A) then
E2m(∆, {0})� η2mα |∆|2m. A simpler proof of this result was given by Shkredov in [70];
it is straightforward to generalise this proof to provide a lower bound for the more general
version of additive energy we are considering in this section, which we shall do now.

Lemma 3.13. Let ε ∈ [0, 1] and B ⊂ G be any finite set. Let f ∈ L1(B) and ω : Ĝ→ R+

be a function with finite support contained in ∆η(f). For all integers m ≥ 1,

E2m(ω,∆ε(B)) ≥
(∑

γ

ω(γ)
)2m


η ‖f‖1

‖f‖2m/(2m−1) |B|
1/2m

2m

− ε

 .
Proof. Without loss of generality we may suppose that ∑γ ω(γ) = 1. Let χ be defined by
χ(x) = ∑

γ ω(γ)cγγ(−x), where cγ f̂(γ) =
∣∣∣f̂(γ)

∣∣∣. By construction whenever ω(γ) 6= 0 we
have

∣∣∣f̂(γ)
∣∣∣ ≥ η ‖f‖1, whence∑

x

f(x)χ(x) =
∑
γ

ω(γ)
∣∣∣f̂(γ)

∣∣∣ ≥ η ‖f‖1 .
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By Hölder’s inequality, however,(∑
x

f(x)χ(x)
)2m

≤
(∑

x

|f(x)|2m/(2m−1)
)2m−1 (∑

x

B(x) |χ(x)|2m
)
.

It remains to note that, by the triangle inequality,

∑
x

B(x) |χ(x)|2m =
∑
x

B(x)
∣∣∣∣∣∑
γ

cγω(γ)γ(x)
∣∣∣∣∣
2m

≤
∑

γ1,...,γ′m

ω(γ1) · · ·ω(γ′m)
∣∣∣B̂(γ1 + · · ·+ γm − γ′1 − · · · − γ′m)

∣∣∣ .
It follows that

η2m ‖f‖2m
1 ≤ ‖f‖2m

2m/(2m−1)
∑

γ1,...,γ′m

ω(γ1) · · ·ω(γ′m)
∣∣∣B̂(γ1 + · · · − γ′m)

∣∣∣
≤ ‖f‖2m

2m/(2m−1) (|B|E2m(ω,∆ε(B)) + ε |B|) ,

and the proof is complete.

Finally, we can prove the technical heart of our argument, the finitary version of the
aforementioned alternative to Chang’s lemma. Again, for our application we need a fairly
general statement, but at first glance the reader should take B = G and ε→ 0, so that
∆ε(B) = {0}.

Theorem 3.14. Suppose that f : B → C and let α = ‖f‖1 / ‖f‖∞ |B|. Let ω : Ĝ→ R+

be a function with finite support contained in ∆η(f). Let 0 ≤ ε ≤ exp(−8L(η)L(α)).
There is a set ∆′ ⊂ ∆η(f) such that∑

γ∈∆′
ω(γ) ≥ 2−12η

∑
γ

ω(γ)

and ∆′ is 214L(α)η−1-covered by ∆ε(B).

Proof. Without loss of generality we may suppose that ∑ω(γ) = 1. Let ω2 =(∑
γ ω(γ)2

)1/2
. Suppose first that ω2 ≥ 2−12L(α)−1/2η and let ∆′ be a random set

selected by including γ ∈ Ĝ independently with probability 213η−1L(α)ω(γ). Then, if
∆′ is this randomly chosen set we have, by Chernoff’s inequality, that |∆′| ≤ 214η−1L(α)
with probability at least 7/8, say, and

E
∑
γ∈∆′

ω(γ) ≥ 213η−1L(α)ω2
2 ≥ 2−11η,
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and hence by Markov’s inequality we have ∑γ∈∆′ ω(γ) ≥ 2−12η with probability at least
1/2, and the lemma follows.

Otherwise, we let n = m = L(α) and d = b212η−1mc and apply Lemmata 3.13 and
3.12. We can suppose, by the above, that ω2 ≤ 2−12L(α)−1/2η ≤ m1/2d−1, as is necessary
for the application of Lemma 3.12. Lemma 3.13 implies that

E2m(ω,∆ε(B)) ≥
η ‖f‖1

‖f‖2m/(2m−1) |B|
1/2m

2m

− ε.

We have the trivial bound ‖f‖2m/(2m−1) ≤ ‖f‖
1/2m
∞ ‖f‖1−1/2m

1 , and hence if ε ≤ η2mα/2
then

E2m(ω,∆ε(B)) ≥ η2mα/2.

By Lemma 3.12 either there is a set ∆′ such that

∑
γ∈∆′

ω(γ) ≥ m

d

and ∆′ is 2d-covered by ∆ε(B), or

η2mα ≤ 219m+1m2md−2m.

In particular,
d ≤ 210mη−1α−1/2m,

which contradicts our initial choice of d and m, and the proof is complete.

This concludes the proof of Theorem 3.4 in the special case of ω having finite support.
The extension to any ω : Ĝ→ R+ is a routine exercise in compactness (we recall that Ĝ
is a compact group).

Theorem 3.4. Let B be a finite subset of G. Let f ∈ L1(B) and δ = ‖f‖1 ‖f‖
−1
∞ |B|

−1.
For any function ω : Ĝ→ R+ supported on ∆η(f) there exists ∆′ ⊂ ∆η(f) such that∫

∆′
ω(γ) dγ ≥ 2−10η

∫
ω(γ) dγ,

and ∆′ is d-covered by 2∆exp(−8L(δ)L(η))(B) for some d ≤ 211η−1L(δ).
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Proof. Let ∆ = ∆exp(−8L(α)L(η))(B) for brevity. We observe that, since
∣∣∣B̂∣∣∣ is a continuous

function from Ĝ to C and

∆ ⊃ {γ :
∣∣∣B̂(γ)

∣∣∣ > exp(−8L(δ)L(η)},

the set ∆ contains a non-empty open subset of Ĝ. Since Ĝ is compact it follows that
there exists some finite Λ ⊂ Ĝ such that Ĝ = ∆ + Λ. Hence we can decompose Ĝ into
finitely many disjoint sets Pλ, where Pλ ⊂ ∆ + λ for all λ ∈ Λ. For each λ ∈ Λ let γλ be
some element of Pλ ∩∆η(f), or γλ = λ if this intersection is empty. We let

Λ′ = {γλ : λ ∈ Λ such that Pλ ∩∆η(f) 6= ∅}

and consider the weight function ω′ supported on Λ′ ⊂ ∆η(f) defined by

ω′(γλ) =
∫
Pλ

ω(γ) dγ.

We observe that, since ω is supported on ∆η(f),∑
γ

ω′(γ) =
∑
λ∈Λ

∫
Pλ

ω(γ) dγ =
∫
ω(γ) dγ.

By Theorem 3.14 there exists some Λ′′ ⊂ Λ′ such that∫
∆+Λ′′

ω(γ) dγ ≥
∑
λ∈Λ′′

ω′(λ) ≥ 2−10η
∫
ω(γ) dγ.

Furthermore, Λ′′ is d-covered by ∆ for some d ≤ 211η−1L(α), and hence ∆+Λ′′ is d-covered
by 2∆ as required.

3.5 An alternative method

In this final section we prove Lemma 3.2, which encapsulates the method of Sanders [60]
and its subsequent generalisation in [3]. As discussed in Section 3.2 the new structural
results of the previous section mean that this combinatorial approach is no longer the
most efficient route, as it leads to a quantitatively poorer result while increasing the
complexity of the hypotheses. Nonetheless, we include a proof here as a demonstration of
how these combinatorial techniques can be used.

The two main ideas are a combinatorial ‘thickening’ transformation coupled with a
probabilistic sampling technique developed by Croot and Sisask [17]. It is important that
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both arguments take place entirely within physical space, as opposed to the usual heavy
dependence on Fourier analysis. The combinatorial transformation essentially converts a
sumset L+S into another sumset L′+S ′ ⊂ L+S where L is larger than L′ and S ′ is not
much smaller than S. By iterating this construction we may pass to the situation where
L is very large, and in particular is very dense inside some structured set. By applying
this to the sumset c1 · A+ c2 · A we obtain the lower bound

〈(c1 · A) ∗ (c2 · A), (−c3 · A)〉 � 〈L ∗ S, (−c3 · A)〉

where L is now very dense inside a structured set. We could apply traditional Fourier
techniques to show that either the latter inner product is large or there is a density
increment, but this leads to a quantitatively very poor result; although we have gained in
the density of L, the cost that must be paid is a dramatic reduction in the density of S.
Sanders [60], however, applied instead the the probabilistic sampling method of Croot
and Sisask which asymmetrically weights the sizes of L and S, allowing the increased
density of L created by the combinatorial procedure to be exploited efficiently.

We first discuss the combinatorial thickening procedure. The key observation is that
for any sets L and S and any x ∈ G we have the inclusion

(L ∪ (S − x)) + (L ∩ (S + x)) ⊂ L+ S.

Since this holds for arbitrary x ∈ G we have the freedom to choose x such that L∪ (S−x)
is very large and L ∩ (S + x) is not too small. This idea was first used by Mann [43],
and has resurfaced in various forms since; in [75] it is referred to as the e-transform.
Sanders [60] observed that if L is contained in a finite group with density λ, say, and
this construction is repeated λ−1 many times then it produces sets L′ and S ′ such that
L′ + S ′ ⊂ L+ S and L′ ⊂ G with constant density. A set with constant density inside a
group is, in many ways, essentially as structured as the group itself, and hence analysis of
L′+S ′ will be much easier than L+S. As usual, this argument is robust enough to apply
even when L ⊂ X for some X with a modicum of structure, which we shall do below.

The essence of the technique is contained in the following technical lemma. We recall
that for a finite set B ⊂ G the function β denotes the relative density of a set within B,
so that β(K) = |B ∩K| / |B|.
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Lemma 3.15. Let B and B′ be symmetric finite subsets of G, and K, L, and S be any
finite subsets of G. Let T ⊂ B′ with density τ . Suppose that S is 2−2τ -sheltered by B′

and B′ is 2−2β(K)-sheltered by B. Then either

1. there are y ∈ B′ and S0 ⊂ S such that, if L0 = L ∪ (K + y), then β(L0) ≥
β(L) + 2−1β(K) and |S0| ≥ 2−2τ |S| and

L0 ∗ S0(x) ≤ L ∗ S(x) +K ∗ T (x)

for all x ∈ G, or

2. there is a set D ⊂ B′ such that |D| ≥ 2−1 |T | and

〈K, (L ∩B) ∗D〉 ≥ 2−2 |D| |K ∩B| .

Proof. Let S = {x ∈ B′ : T ∗ (−S)(x) ≥ 2−2τ |S|}. Whenever x ∈ S by definition
|S ∩ (T − x)| ≥ 2−2τ |S|. Furthermore, since S is 2−2τ -sheltered by B′ and T ⊂ B′,

|〈T ∗ (−S), B′〉 − |S| |T || ≤
∑
x 6∈B′

T ∗ (−S)(x) ≤ |S| |(B′ − S)\B′| ≤ 2−2 |T | |S|

and hence
(1− 2−2) |S| |T | ≤ 〈T ∗ (−S), B′〉 ≤ |S| |S|+ 2−2 |S| |T | .

In particular, it follows that |S| ≥ 2−1 |T |. Let L′ = L ∩B, K ′ = K ∩B and define

D =
{
x ∈ B′ : L′ ∗ (−K)(x) ≥ 2−2 |K ′|

}
.

Suppose first that |D| < 2−1 |T |, so that S\D 6= ∅. Since B′ is 2−2β(K)-sheltered by B
we have, as above,

|〈S\D,K ′ ∗B〉 − |K ′| |S\D|| ≤ 2−2 |K ′| |S\D| ,

and hence ∑
y∈S\D

|K ′ ∩ (B − y)| = 〈S\D,K ′ ∗B) ≥
(
1− 2−2

)
|K ′| |S\D| .

By the pigeonhole principle there exists y ∈ S\D such that |K ′ ∩ (B − y)| ≥ (1−2−2) |K ′|
and hence

|(L ∪ (K + y)) ∩B| ≥ |L′|+ |K ∩ (B − y)| − L′ ∗ (−K)(y) ≥ |L′|+ 2−1 |K ′| .
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Thus we are in the first case, letting S0 = S ∩ (T − y), since for any x ∈ G

(L∪ (K + y)) ∗ (S ∩ (T − y))(x) ≤ L ∗S(x) + (K + y) ∗ (T − y)(x) = L ∗S(x) +K ∗T (x).

Otherwise, |D| ≥ 2−1 |T | and, by the definition of D,

〈K,L′ ∗ (−D)〉 ≥ 2−2 |D| |K ∩B| ,

and the proof is complete.

Lemma 3.15 can be applied repeatedly as follows.

Lemma 3.16. Let c ∈ [0, 1/2] be an arbitrary constant, and let B and B′ be finite
symmetric subsets of G. Let T ⊂ B′ with density τ , and K be any finite subset of
G. Suppose that T ′ is a finite set which is 2−2τ -sheltered by B′ and B′ is 2−2β(K)-
sheltered by B. Finally, suppose that there is some z ∈ B′ such that T ′ ⊂ T − z and
|(K + z) ∩B| ≥ |K ∩B| /2. Then for any m ≥ 1 either

1. there are sets S ⊂ T ′ and X ⊂ B′ with 1 ≤ |X| ≤ m such that, if L = K +X, then

a) L ∗ S(x) ≤ m(K ∗ T (x)) for all x ∈ G,

b) β(L) ≥ min (c, 2−1mβ(K)), and

c) |S| ≥ (2−2τ)m−1 |T ′|,

2. or there is a set D ⊂ B′ with |D| ≥ 2−1 |T | and C ⊂ B such that

β(C) ≤ min(c,mβ(K)) and 〈K,C ∗D〉 ≥ 2−2 |D| |K ∩B| .

Proof. We prove this by induction on m. When m = 1 we set S = T ′ and X = {z}.
We clearly have, for all x ∈ G, the required bound (K + z) ∗ T ′(x) ≤ K ∗ T (x) since
T ′ ⊂ T − z. Furthermore, by hypothesis β(L) ≥ β(K)/2, and hence we are in the first
case of the lemma.

We shall henceforth suppose that the lemma is true for some fixed m ≥ 1 and prove
the claim for m+ 1. If we are in the second case then we are done immediately; hence
suppose otherwise, and we have Xm and Sm as given by the inductive hypothesis. Let
Lm = K +Xm. If β(Lm) ≥ min(c, 2−1(m+ 1)β(K)) then we are in the first case of the
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lemma, letting Xm+1 = Xm and Sm+1 = Sm. Otherwise we are in a position to apply
Lemma 3.15 with L = Lm and S = Sm.

Since β(Lm) ≤ min(c, 2−1(m+ 1)β(K)) this implies that either we are in the second
case of the lemma (relabelling Lm ∩ B = C), or there are x ∈ B′ and a set Sm+1 ⊂ Sm

such that, if Xm+1 = Xm ∪ {x} then, letting Lm+1 = Lm ∪ (K + x) = K +Xm+1,

1. Lm+1 ∗ Sm+1(x) ≤ Lm ∗ Sm(x) +K ∗ T (x) ≤ (m+ 1)(K ∗ T (x)) for all x ∈ G,

2. β(Lm+1) ≥ β(Lm) + 2−1β(K) ≥ 2−1(m+ 1)β(K), and

3. |Sm+1| ≥ 2−2τ |Sm| ≥ (2−2τ)m |T ′|,

and the proof is complete.

Lemma 3.16 will suffice for creating lower bounds for the convolution of two sets
A1 ∗ A2, which is sufficient for the traditional s = 3 case of Roth’s theorem. It first
appeared in the work of Sanders [60] in the case s = 3 and G = Z/NZ. In [3] we observed
that this idea could be applied iteratively to multiple convolutions A1 ∗ · · · ∗Ak, and thus
extended the method of Sanders to translation invariant equations in s ≥ 4 variables.

Lemma 3.17. Let m ≥ 2 be any integer. Let B, B′2, . . . , B′k and B′′2 , . . . , B′′k be finite
symmetric subsets of G. Let A1 ⊂ B with density α1 and for 2 ≤ i ≤ k let Ai ⊂ B′i with
density αi. Finally, suppose that B′′i is 2−2αi-sheltered by B′i and that B′i is (2−2α1, 2−k−1)-
sheltered by B for 2 ≤ i ≤ k.

Then either

1. there are sets Si ⊂ B′′i for 2 ≤ i ≤ k and Xi ⊂ B′i such that 1 ≤ |Xi| ≤ m for
2 ≤ i ≤ k, and with L = A1 +X2 + · · ·+Xk and λ = |L ∩B| / |B| we have

a) L ∗ S2 ∗ · · · ∗ Sk(x) ≤ mk−1A1 ∗ · · · ∗ Ak(x) for all x ∈ G,

b) λ ≥ min(2−k−1, (2−1m)k−1
α1), and

c) |Si| ≥ 2−2m+1αmi |B′′i | for 2 ≤ i ≤ k,

2. or for some 2 ≤ i ≤ k there is a set D ⊂ B′i with |D| ≥ 2−1α′ |B′i| such that A1 in
B has correlation of strength 2−2k−2m1−k with D ∗D.
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Proof. We use strong induction on k; thus we shall fix k ≥ 2 and assume that the theorem
is known to hold for all k′ < k. In particular, we shall assume that there are X1 = {0}
and Xi ⊂ B′i and Si ⊂ B′′i for 2 ≤ i ≤ k − 1 such that, if L = A1 +X1 + · · ·+Xk−1 and
λ = |L ∩B| / |B|, then

1. L ∗ S2 ∗ · · · ∗ Sk−1(x) ≤ mk−2A1 ∗ · · · ∗ Ak−1(x) for all x ∈ G,

2. λ ≥ min(2−k, (2−1m)k−2
α1), and

3. |Si| ≥ 2−2m+1αmi |B′′i | for 2 ≤ i ≤ k − 1.

This is obvious for k = 2, and for k > 2 this follows from the induction hypothesis, for if
the second case of the theorem holds for k− 1 then it already holds for k and we are done.

Since B′′k is 2−1αk-sheltered by B′ and Ak ⊂ B′k we have

|〈B′′k ∗ Ak, B′k〉 − |Ak| |B′′k || ≤
∑
x 6∈B′

k

B′′k ∗ Ak(x) ≤ 2−1 |Ak| |B′′k | ,

so that ∑
z∈B′

k

B′′k ∗ Ak(z) ≥ 2−1 |Ak| |B′′k | ,

and hence if B0 = {z ∈ B′k : B′′ ∗ Ak(z) ≥ 2−1αk |B′′k |} then B0 6= ∅. Furthermore, since
B′k is 2−1λ-sheltered by B it follows similarly that

∑
z∈B0

B ∗ L(z) =
∑
x∈B

(−B0) ∗ L(x) ≥ 2−1 |L ∩B| |B0| ,

and hence there exists z ∈ B0 such that B ∗ L(z) ≥ 2−1 |L ∩B|. We fix such z and let
T ′ = B′′k ∩ (Ak − z), so that β′′k(T ′) ≥ 2−1αk.

We first observe that if λ ≥ 2−k then we are done immediately, letting Sk = T ′ and
Xk = {z}, and hence we can suppose that λ ≥ 2−k+2α1 |X1| · · · |Xk−1|. We now apply
Lemma 3.16 with K = L and T = Ak, and c = 2−k−1. If the first case of Lemma 3.16 holds
then there are sets Xk ⊂ B′k and Sk ⊂ B′′k such that if L′ = L+Xk = A1 +X1 + · · ·+Xk

and λ′ = |L′ ∩B| / |B|, then

1. L′ ∗ Sk(x) ≤ m(L ∗ Ak(x)) for all x ∈ G,

2. λ′ ≥ min
(
2−k−1, 2−1mλ

)
≥ min

(
2−k−1, (2−1m)k−1α1

)
, and
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3. |Sk| ≥ (2−2αk)m−1 |T ′| ≥ 2−2m+1αmk |B′′k |,

and we are in the first case of the lemma. Otherwise, there is a set D ⊂ B′k with
|D| ≥ 2−1 |Ak| and C such that |C| ≤ min(2−k−1,mλ) |B| and, if L = A1 +X1 +· · ·+Xk−1,
then

〈L,C ∗D〉 ≥ 2−2 |D|λ |B|

≥ 2−k |D|α1 |X1| · · · |Xk−1| |B| .

By the triangle inequality there exists some x ∈ G such that

〈(A1 + x), C ∗D〉 ≥ 2−k |D|α1 |B| .

Replacing C by C−x we may assume that x = 0. Furthermore, we have the trivial bound
〈B,C ∗D〉 ≤ |C| |D| ≤ 2−k−1 |D| |B|. In particular, if we let A1 = (A1 − α1)B, then by
the Cauchy-Schwarz inequality

‖A1 ∗D‖2 |C|
1/2 ≥ 〈A1, C ∗D〉

≥ 2−k−1 |D|α1 |B| .

Hence
‖A1 ∗D‖2

2 ≥ 2−2k−2 |C|−1 α2
1 |B|

2 |D|2 ≥ 2−2k−2m−1λ−1α2
1 |B| |D|

2 .

It follows that A1 in B has correlation of strength 2−2k−2m−1λ−1α1 with D ∗D and the
claim follows, since we trivially have λ ≤ α1 |X1| · · · |Xk−1| ≤ mk−2α1.

It is helpful to view Lemma 3.17 with most of the technicalities stripped away; the
point is that we can bound the convolution A1∗· · ·∗Ak from below by another convolution
L ∗ S2 ∗ · · · ∗ Sk such that L has density roughly mk−1α1 and each Si has density roughly
αmi . In particular, if we choose m ≈ α

−1/(k−1)
1 then L has constant density within

some structured set, and hence must be very structured itself. This fact is only useful,
however, if we can work with the convolution L ∗ S2 ∗ · · · ∗ Sk in some asymmetric way
to lessen the impact of the density of the other sets decreasing from exp(−L(αi)) to
exp(−α−1/(k−1)

1 L(αi)).
Again, traditional Fourier analytic techniques fail here, as they treat each part of a

convolution with equal weighting and so the gains from the increased density of L are
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swamped by the losses resulting from the sparsity of the sets Si. The new method of Croot
and Sisask [17] allows for one of the sets in a convolution to be given special weighting,
which enables the combinatorial techniques above to be exploited.

This allowed Sanders [60] to achieve a bound of 1/(logN)1+o(1) for the traditional case
of Roth’s theorem. The novelty of [3] lies in generalising this technique from A1 ∗ A2 to
A1 ∗ · · · ∗ Ak to prove good quantitative bounds for translation invariant equations in
s > 3 variables. The generalisation lies entirely in the combinatorial arguments presented
above; the application of the method of Croot and Sisask is the same as that in [60], but
we include it here for a complete proof of the correlation-producing Lemma 3.2.

We first state the sampling theorem of Croot and Sisask; there have been several
proofs of this theorem, presented in [17], [60] and [16]. We recall the translation operator
τx defined by τx(f(y)) = f(y − x).

Theorem 3.18 (Croot-Sisask [17]). Let η ∈ (0, 1] and p ≥ 2. Let S and T be finite
subsets of G such that |S + T | ≤ K |S| for some K ≥ 2. For all g ∈ Lp(G) there exist
u ∈ T and X ⊂ T − u with

|X| ≥ exp(−212pη−2 logK) |T | ,

such that
‖τx(S ∗ g)− S ∗ g‖p ≤ η |S| ‖g‖p

for all x ∈ X.

We now use Theorem 3.18 to prove another correlation-producing lemma, following
the method of [60].

Lemma 3.19. Let ` ≥ 1 be any integer. Let B, B′, and B′′ be finite symmetric subsets
of G such that |B′ +B′′| ≤ 2 |B′|. Let A and L be subsets of B with densities α and λ
respectively, and suppose that Sk ⊂ B′ with density σk. Finally, suppose that 2`B′′ + S2 +
· · ·+ Sk is 2−1λ-sheltered by B. Then either

〈L ∗ S2 ∗ · · · ∗ Sk, A〉 ≥ 2−4λ |S2| · · · |Sk| |A| ,

or there is u ∈ B′′ and D ⊂ B′′ − u with

|D| ≥ exp
(
−222`2λ−2L(α) log(2σ−1

k )
)
|B′′|

such that A in B has correlation of strength 2−4λα with D(`).

89



Proof. We first observe that since Sk ⊂ B′ we have that

|Sk +B′′| ≤ |B′ +B′′| ≤ 2 |B′| = 2σ−1
k |Sk| .

By Theorem 3.18 there are u ∈ B′′ and D ⊂ B′′ − u with

|D| ≥ exp
(
−212η−2`2p log(2σ−1

k )
)
|B′′| ,

such that for all d ∈ D

‖τdf − f‖p ≤ η`−1 |L|1/p |S2| · · · |Sk| ,

where f = L ∗ S2 ∗ · · · ∗ Sk. By the triangle inequality it follows that

‖δ ∗ f − f‖p ≤ η |L|1/p |S2| · · · |Sk| ,

where |D|` δ = D(`). By Hölder’s inequality

|〈δ ∗ f, A〉 − 〈f, A〉| ≤ η |L|1/p |S2| · · · |Sk| |A|1−1/p

≤ 2−3λ |S2| · · · |Sk| |A|

taking p = L(α) and η = 2−5λ, say. Hence either we are in the first case or

〈δ ∗ f, A〉 ≤ 2−4λ |S2| · · · |Sk| |A| . (3.13)

By hypothesis we know that `D + S2 + · · ·+ Sk is 2−1λ-sheltered by B, whence

〈δ ∗ f,B〉 ≥ 2−1 |L| |S2| · · · |Sk| . (3.14)

Combining the inequalities (3.13), (3.14) and using the Cauchy-Schwarz inequality yields

2−2λ |S2| · · · |Sk| |A| ≤ |〈δ ∗ f,A〉| ≤ ‖A ∗ (−δ)‖2 |L|
1/2 |S2| · · · |Sk|

and the conclusion follows.

It remains to combine Lemmata 3.17 and 3.19, both of which produce some correlation,
to prove the more efficient correlation-producing Lemma 3.2. As discussed above, in the
case s = 3 and G = Z this is essentially already present in [60]; the novelty here is in the
generalisation of this technique to general abelian groups and s > 3.
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Lemma 3.2. Let B be a finite symmetric subset of G. Let A1 and As be subsets of B
with relative densities α1 and αs respectively, and let A2, . . . , As−1 be any finite subsets of
G. Let α = min(α1, αs).

Furthermore, suppose that there are finite symmetric sets B′2, . . . , B′s−1, B
′′
2 , . . . , B

′′
s−1, B

′′′

such that for each 2 ≤ i ≤ s− 1

1. Ai ⊂ B′i with density at least α′,

2. 2`B′′′ +B′′2 + · · ·+B′′s−1 is 2−1α-sheltered by B,

3. B′i is 2−2sα-sheltered by B,

4. B′′i is 2−2α′-sheltered by B′i, and

5.
∣∣∣B′′s−1 +B′′′

∣∣∣ ≤ 2
∣∣∣B′′s−1

∣∣∣.
Then either

1. 〈A1 ∗ · · · ∗ As−1, As〉 ≥ exp
(
−25sα

−1/(s−2)
1 L(α′)

)∏s−1
i=2 |B′′i | |As|, or

2. there is a finite set D with β′(D) ≥ 2−1α′ such that A1 in B has correlation of
strength 2−2sα1 with D ∗D, or

3. for any integer ` ≥ 1 there is a finite set D with

β′′′(D) ≥ exp
(
−226+2s`2α

−1/(s−2)
1 L(α′)L(αs)

)
such that As in B has correlation of strength 2−4−sαs with D(`).

Proof. We first apply Lemma 3.17 with k = s − 1 and m = d2α−1/(s−2)
1 e. This implies

that either there is, for some 2 ≤ i < s, a set D ⊂ B′i with |D| ≥ 2−1α′ |B′i| such that A1

in B has correlation of strength 2−2sα1 with D ∗D, and we are in the first case of the
lemma, or there are sets Si ⊂ B′′i for 1 < i < s and L ⊂ B such that

1. L ∗ S2 ∗ · · · ∗ Ss−1(x) ≤ 2sα−1
1 A1 ∗ · · · ∗ As−1(x) for all x ∈ G,

2. β(L) ≥ 2−s, and

3. |Si| ≥ exp(−23L(αi)α−1/(s−2)
1 ) |B′′i | for 1 < i < s.
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By Lemma 3.19 either

〈L ∗ S2 ∗ · · · ∗ Ss−1, As〉 ≥ exp(−24sL(α′)α−1/(s−2)
1 )

s−1∏
i=2
|B′′i | |As| ,

and hence

〈A1 ∗ · · · ∗ As−1, As〉 ≥ exp(−25sL(α′)α−1/(s−2)
1 )

s−1∏
i=2
|B′′i | |As|

as required, or there are u ∈ B′′′ and D ⊂ B′′′ − u with

|D| ≥ exp
(
−226+2s`2α

−1/(s−2)
1 L(αs)L(α′)

)
|B′′′|

such that As in B has correlation of strength 2−4−sαs with D(`), and the proof is complete.
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chapter 4

ARITHMETIC INVERSE THEOREMS IN FUNCTION FIELDS

We recall that Fq[t] denotes the ring of polynomials over the finite field Fq, where q is
some fixed prime power pr. In this chapter we prove a collection of related arithmetic
inverse theorems for finite subsets of Fq[t]. In this introductory section we will suppose
that we are in the simplest case when q = p.

Let A be a finite subset of Fp[t]. If one is just concerned with the sumset A+ A then
one may as well view A as a finite subset of Fnp for some n ≥ 0. Questions about the
behaviour of A + A therefore belong in the realm of arithmetic combinatorics over Fnp ,
which has received a great deal of attention.

In Fp[t], however, we have more arithmetic available to us than just addition; in
particular, we may also ask about the behaviour of A+ t · A, and especially how large
such a set can be as a function of |A|. It is easy to verify the trivial inequalities

2 |A| − 1 ≤ |A+ t · A| ≤ |A|2 ,

valid for any finite A ⊂ Fp[t]. Furthermore, both bounds are sharp, so there is not much
more that we can say in general. In the spirit of the inverse results for the size of the
sumset discussed in the introduction, however, one can hope for some characterisation of
the cases when A+ t · A is small – that is, a result stating that |A+ t · A| is small if and
only if A is ‘close’ to a certain kind of structure.

From Plünnecke’s inequality we have that |A+ A| ≤ |A+ t · A|2 / |A|, and hence if
|A+ t · A| is small then certainly |A+ A| is small, and so, viewing A as a subset of some
Fnp , the inverse results discussed in the introduction imply that A is close to being an
Fp-vector space. This tells us a great deal about the deeper additive structure of A, but
it fails as a characterisation of the cases when |A+ t · A| / |A| is small.

That is, while it is true that if |A+ t · A| / |A| is small then A is close to being an
Fp-vector space the converse fails dramatically. Indeed, it is possible for A to be a finite
Fp-vector space, and yet |A+ t · A| = |A|2, the maximum possible. Such a set is given by,
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for example,

A =
{

n∑
i=0

ait
2i : ai ∈ Fp

}

for any n ≥ 0.
To get an idea of what kind of characterisation is appropriate we should first ask for

examples of sets where |A+ t · A| is small. By considering the analogy with Z we quickly
arrive at the concept of an Fp[t]-arithmetic progression – a set of the form a · Fp[t]N + x

for some a, x ∈ Fp[t], where Fp[t]N denotes the set of polynomials in Fp[t] of degree less
than N . In general, we define an arithmetic space of dimension d to be a set of the shape

Fp[t]n1 · x1 ⊕ · · · ⊕ Fp[t]nd · xd

for some n1, . . . , nd ≥ 0 and x1, . . . , xd ∈ Fp[t], and where the sum is direct, considering
each component as an Fq-vector space. This is the Fp[t]-analogue of a generalised arithmetic
progression in the integers. It is easy to see that if A is an arithmetic space of dimension
d then A + A = A and |A+ t · A| ≤ pd |A|. We say that A is r-covered by V if there
exists a set X of size |X| ≤ r such that A ⊂ V +X. The proof of the following lemma is
immediate.

Lemma 4.1. Let V be an arithmetic space of dimension d and let A be a finite set which
is exp(d)-covered by V such that |A| ≥ exp(−d) |V |. Then |A+ t · A| ≤ exp(Op(d)) |A|.

The goal, then, is to prove the converse result which will complete our characterisation
of sets A such that |A+ t · A| is small. By adapting the proof of the sharpest quantitative
bounds available for the inverse results over the integers, we are able to prove the following.

Theorem 4.2. Let A ⊂ Fp[t] be a finite set and let K ≥ 4 be such that |A+ t · A| ≤ K |A|.
There exists some

d� (logK)3(log logK)3 log2 3

and an arithmetic space of dimension d such that |V | ≤ exp(d) |A| and A is exp(d)-covered
by V .

Lemma 4.1 shows that the best bound one could hope for here is d � logK. That
such a bound in the analogous result over the integers is attainable was conjectured by
Ruzsa [57], who credits the analogous conjecture over Fnp to Marton. In general, such
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a conjecture is now commonly referred to as the Polynomial Freiman-Ruzsa conjecture.
There is no reason not to expect the same for the analogous problem in Fp[t]. One
attractive aspect of the theory over Fp[t] is that we are able to prove such a sharp result
with the additional hypothesis that |A+ A| � |A|. In other words, for sets which are
approximately closed under addition we are able to prove the quantitatively optimal result
which characterises sets A such that |A+ t · A| / |A| is small.

Theorem 4.3. Let A ⊂ Fq[t] be a finite set and let K1, K2 ≥ 2 be such that |A+ A| ≤
K1 |A| and |A+ t · A| ≤ K2 |A|. Then there is some d �p,K1 logK2 and an arithmetic
space of dimension d such that |V | ≤ exp(d) |A| and A is exp(d)-covered by V .

The above discussion assumes that q = p for some prime p. For the general case when
q is a prime power one must slightly strengthen the hypothesis; in particular, one needs to
control not only |A+ A| but also |A+ a · A| for all a ∈ Fq. By Plünnecke’s inequality and
the trivial inclusion n · A ⊂ nA it is easy to see that for q = p control of |A+ A| suffices.

This chapter will be structured as follows. In the first section we address the case when
A is a finite Fq-vector space, and hence has the strongest possible amount of additive
structure. In this situation we are able to exploit the rigid structure of Fq[t] to prove a
very sharp arithmetic inverse theorem.

In the second section we prove some results from the literature that will be needed in
the following section; the statements that we require are slightly more general than those
present in the literature, although the proofs are largely trivial adaptations.

In the third section we adapt the latest methods used for additive inverse results, as
presented by Sanders [63], to weaken the rigid hypotheses of the results from the first
section. We have taken some care with our arguments to prove Theorem 4.3 with good
dependency on both K1 and K2.

Finally, in the fourth section we give an application of such inverse results to an
Fq[t]-analogue of a problem of Konyagin and Łaba [35].

4.1 Decomposition of vector spaces

In this section we will prove an arithmetic inverse result with a strong conclusion but
with a correspondingly strong hypothesis – in particular, we will be concerned only with
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finite Fq-vector spaces V and prove structural results for such sets under the assumption
that |V + t · V | is small.

We first introduce some notation. We recall that Fq[t]N = {x ∈ Fq[t] : deg x < N}.
A Fq-vector space V has arithmetic dimension k if k is minimal such that there exist
d1, . . . , dk ≥ 1 and x1, . . . , xk ∈ Fq[t] such that

V = Fq[t]d1 · x1 ⊕ · · · ⊕ Fq[t]dk · xk.

Observe in particular that, if we consider d1 = · · · = dk = 1, the arithmetic dimension of
V is at most the dimension of V considered as a vector space over Fq. We further say that
V has strong arithmetic dimension k if k is minimal such that there exist d1, . . . , dk ≥ 1
and x1, . . . , xk ∈ Fq[t] such that

V = Fq[t]d1 · x1 ⊕ · · · ⊕ Fq[t]dk · xk

and d1 + deg x1 < · · · < dk + deg xk. It is clear that the strong arithmetic dimension
is always at least the arithmetic dimension; in fact, we will shortly see that they are
always identical, and hence this definition is redundant. It is convenient, however, for the
inductive proof of Theorem 4.5.

For the main structural theorem of this section we shall require the following technical
lemma. This is essentially the univariate case of the important theorem that a minimal
Gröbner basis always exists for any finite set in a polynomial ring; in the univariate case,
the proof is particularly simple.

Lemma 4.4. If V ⊂ Fq[t] is a finite Fq-vector space then there exists a decomposition of
the form

V = Fq[t]1 · x1 ⊕ · · · ⊕ Fq[t]1 · xd,

where deg x1 < deg x2 < · · · < deg xd.

Proof. We use induction on dim V . If dim V = 0 then the result is trivial. Otherwise, let
x ∈ V \{0} be a monic polynomial of minimal degree, and let V = Fq[t]1 ·x⊕W . The result
follows from the inductive hypothesis and the fact that if w ∈ W\{0} then degw > deg x.
This latter fact is true because otherwise we must have a monic w ∈ W\{0} such that
degw = deg x, and hence w − x ∈ V \{0} has degree strictly less than deg x, which
contradicts the minimality of deg x.
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The following theorem is a very strong arithmetic inverse theorem for Fq-vector
spaces V . In particular, if the additive structure of V is as strong as possible then we
obtain the best possible inverse result concerning what structure can be deduced from
|V + t · V | / |V |. The rigid arithmetic structure of Fq[t] allows for a constructive algebraic
proof. We emphasise that the following theorem offers a complete characterisation of
subspaces V such that |V + t · V | / |V | is small.

Theorem 4.5. Let V ⊂ Fq[t] be a finite Fq-vector space. We have |V + t · V | = qr |V | if
and only if V has arithmetic dimension r.

In the proof the following simple fact will be used frequently: if x, y ∈ Fq[t] are such
that deg x < deg y, then deg(x+ y) = deg y.

Proof. It follows immediately from the definitions that if V has arithmetic dimension r
then |V + t · V | ≤ qr |V |. Using the fact that the strong arithmetic dimension is at least
the arithmetic dimension, it thus suffices to show that if |V + t · V | ≤ qr |V | then V has
strong arithmetic dimension of at most r. We show this by induction on r. The case
r = 0 is trivial, since the trivial lower bound |V + t · V | ≥ 2 |V | − 1 forces V = {0}. We
shall hence assume that r ≥ 1 and that the claim has been proved for r′ < r. Let

V = Fq[t]1 · x1 ⊕ · · · ⊕ Fq[t]1 · x`

be a decomposition of the type provided by Lemma 4.4, and for 1 ≤ s ≤ ` let

V≤s = Fq[t]1 · x1 ⊕ · · · ⊕ Fq[t]1 · xs.

We observe that if x ∈ V≤s\{0} then deg x1 ≤ deg x ≤ deg xs. Furthermore, if x ∈ V \V≤s
then deg x > deg y for all y ∈ V≤s. Let 1 ≤ s ≤ ` be maximal such that V≤s has strong
arithmetic dimension of at most r. If s = ` then the claim follows immediately, so suppose
that 1 ≤ s < ` and that V≤s has strong arithmetic dimension of 1 ≤ r′ ≤ r. We must
have r′ = r, or this contradicts the maximality of s by considering the decomposition

V≤s+1 = V≤s ⊕ Fq[t]1 · xs+1 = Fq[t]d1 · y1 ⊕ · · · ⊕ Fq[t]dr′ · yr′ ⊕ Fq[t]1 · xs+1.

Hence V≤s has strong arithmetic dimension r, whence we have some decomposition

V≤s = Fq[t]d1 · y1 ⊕ · · · ⊕ Fq[t]dr · yr,
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such that d1 + deg y1 < · · · < dr + deg yr; furthermore, since deg xs is maximal over
all x ∈ V≤s, and so is tdr−1yr, we have that dr + deg yr = deg xs + 1 < deg tx`. If
|V≤s + t · V≤s| < qr |V | then by induction V≤s has strong arithmetic dimension of less than
r, which is a contradiction as noted above. It follows that |V≤s + t · V≤s| = qr |V≤s| and
hence, since the dim V≤s + r many elements

{y1, . . . , t
d1y1, y2, . . . , yr, . . . , t

dryr}

span the Fq-vector space V≤s + t · V≤s, they are also linearly independent over Fq. In
particular, if

α1t
d1y1 + · · ·+ αrt

dryr ∈ V≤s

with αi ∈ Fq then we must have αi = 0 for 1 ≤ i ≤ r.
We now use the hypothesis |V + t · V | ≤ qr |V | to observe that the dim V + r + 1

elements
{y1, . . . , t

d1y1, . . . , t
dryr} ∪ {xs+1, . . . , x`} ∪ {tx`} ⊂ V + t · V

are linearly dependent over Fq. Since the degree of tx` is strictly larger than that of all
elements of V ∪ t · V≤s there must exist αi ∈ Fq for 1 ≤ i ≤ r, not identically zero, such
that

z = α1t
d1y1 + · · ·+ αrt

dryr ∈ V.

If αr = 0 then deg z ≤ dr−1 + deg yr−1 < dr + deg yr = deg xs + 1, and hence z ∈ V≤s,
which contradicts the above. Hence we must have deg z = dr + deg yr = deg xs + 1, and
hence z ∈ V≤s+1. Let 1 ≤ i ≤ r be such that αi 6= 0 and di is minimal, and let z = tdiy,
say. In particular we have that tjy ∈ V≤s for 0 ≤ j < di and tdiy ∈ V≤s+1. We claim that
V≤s+1 has strong arithmetic dimension r, with a suitable decomposition provided by

Fq[t]d1 · y1 ⊕ · · · ⊕ Fq[t]di−1 · yi−1 ⊕ Fq[t]di+1 · yi+1 ⊕ · · · ⊕ Fq[t]dr · yr ⊕ Fq[t]di+1 · y. (4.1)

This contradicts the maximality of s and completes the proof. The vector space (4.1) is
contained in V≤s+1, and since dim V≤s+1 = dim V≤s + 1, comparing dimensions shows that
the vector spaces are equal, provided only that this sum is indeed direct. If the sum is
not direct then we have aj ∈ Fq[t]dj , not identically zero, and β ∈ Fq such that

a1y1 + · · ·+ ai−1yi−1 + ai+1yi+1 + · · ·+ aryr + aiy + βtdiy = 0.
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If β = 0 then this contradicts the orthogonality of the original decomposition of V≤s,
and so β 6= 0. Since the degree of the final summand is di + deg y = deg z = dr + deg yr
which is strictly larger than the degree of all the other summands, the left hand side
cannot be zero, which is a contradiction. Finally, the fact that this decomposition is
a witness to V≤s+1 having strong arithmetic dimension r follows from the fact that
di + 1 + deg y = deg z + 1 > dr + deg yr.

We now prove a similar statement, weakening the condition that V be a vector space
to merely having very tight control on the growth of its additive sets.

Lemma 4.6. Let X ⊂ Fq[t] be a finite set such that Fq ·X = X. If |nX| ≤ `1 |X| and
|n(X + t ·X)| ≤ `2 |X| for all n ≥ 0 then there is a finite Fq-vector space V ⊂ 〈X〉 such
that X ⊂ V , and furthermore |V | ≤ `1 |X| and |V + t · V | ≤ `2 |X|.

Proof. Since (n + 1)X ⊃ nX for all n ≥ 0, and |nX| is bounded above by a constant
independent of n there exists some n0 ≥ 0 such that mX = n0X for all m ≥ n0. We
claim that V = n0X is a Fq-vector space; it is clearly closed under dilations from Fq, and
if v, w ∈ V then v + w ∈ 2n0X = n0X = V , so that V is closed under addition. The
lemma now follows trivially.

The following theorem is an immediate consequence of Theorem 4.5 and Lemma 4.6.

Theorem 4.7. Let X ⊂ Fq[t] be a finite set such that Fq · X = X. If |nX| ≤ K1 |X|
and |n(X + t ·X)| ≤ K2 |X| for all n ≥ 0 then there is an arithmetic space V ⊂ 〈X〉 of
arithmetic dimension of at most logq(K2) such that X ⊂ V and |V | ≤ K1 |X|.

4.2 Random sampling and covering lemmata

4.2.1 Random sampling

The power of random sampling in arithmetic combinatorics was demonstrated by Croot
and Sisask [17], who used it to create large sets of Lp almost-periods for convolutions;
most crucially, their results have only a polynomial dependence on p where traditional
Fourier analytic techniques have an exponential dependence. Their ideas have seen many
applications, and played a crucial part in Sanders’ quantitative improvement of Roth’s
theorem, as discussed in Chapter 3.
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Sanders also used these ideas to give a dramatic quantitative improvement of Freiman’s
theorem in [62]. An attractive feature of the Croot-Sisask method is that since it samples
from physical space, rather than Fourier space, it is very robust and hence we can control
arithmetic behaviour more exotic than simple addition. In this section we will adapt
the proof of the Croot-Sisask theorem to prove a version suitable for our purposes, and
construct a set X such that X + t ·X forms a large set of almost-periods.

In this section we keep our results general, and unless otherwise stated G is an arbitrary
abelian group with the discrete topology.

We will use the random sampling argument of Croot, Łaba and Sisask [16], and give
an almost self-contained proof, appealing only to the classical Marcinkiewicz-Zygmund
inequality [44].

Lemma 4.8 (Marcinkiewicz-Zygmund inequality). Let p ≥ 2 and X be any random
variable such that E |X − EX|p <∞. If X1, . . . , Xk are independently sampled from X

then

E

∣∣∣∣∣∣1k
k∑
j=1

Xj − EX

∣∣∣∣∣∣
p

≤
(
Cp

k

)p/2
E |X − EX|p ,

where C > 0 is an absolute constant.

We now use this to prove the following general sampling lemma of [16].

Lemma 4.9. Let p ≥ 2 and g1, . . . , gn ∈ Lp(G). There is some k � η−2p such that∥∥∥∥∥∥ 1
n

n∑
i=1

gi −
1
k

k∑
j=1

gσj

∥∥∥∥∥∥
p

< η max
1≤i≤n

‖gi‖p

for at least nk/2 many σ ∈ [n]k.

Proof. Let h be chosen uniformly at random from g1, . . . , gn. For any x ∈ G

Eh(x) = 1
n

n∑
j=1

gj(x) = f(x),

say. Let h1, . . . , hk be independently chosen copies of h, where k is some integer to be
chosen later. By Lemma 4.8, for any x ∈ G,

E

∣∣∣∣∣∣1k
k∑
j=1

hj(x)− f(x)

∣∣∣∣∣∣
p

≤
(
Cp

k

)p/2
E |h(x)− f(x)|p .
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In particular, summing over all x ∈ G yields

∑
x∈G

E

∣∣∣∣∣∣1k
k∑
j=1

hj(x)− f(x)

∣∣∣∣∣∣
p

≤
(
Cp

k

)p/2
E ‖h− f‖pp .

By the triangle inequality, if M = max1≤i≤n ‖gi‖p then ‖h− f‖
p
p ≤ (2M)p, whence

E

∥∥∥∥∥∥1
k

k∑
j=1

hj − f

∥∥∥∥∥∥
p

p

≤
(
CpM2

k

)p/2
.

In particular we can choose k � pη−2 such that

E

∥∥∥∥∥∥1
k

k∑
j=1

hj − f

∥∥∥∥∥∥
p

p

≤ (ηM)p/2.

By Markov’s inequality it follows that with probability at least 1/2∥∥∥∥∥∥1
k

k∑
j=1

hj − f

∥∥∥∥∥∥
p

p

< (ηM)p,

and the proof is complete.

We now apply Lemma 4.9 to a convolution to prove the following version of the
Croot-Sisask theorem, the essence of which first appeared in [17]. It is convenient here to
use the translation operator τx, defined as τxf(y) = f(y − x).

Theorem 4.10. Let p ≥ 2, S ⊂ G be some finite set, and g ∈ Lp(G). For all η ∈ (0, 1]
there are k � pη−2 and L ⊂ Sk such that |L| ≥ |S|k /2, and if (x, . . . , x) ∈ L − L then

‖τx(S ∗ g)− S ∗ g‖p ≤ η |S| ‖g‖p .

Proof. We apply Lemma 4.9 to the decomposition S ∗g = ∑
y∈S τyg. This yields an integer

k � η−2p and a set L ⊂ Sk such that |L| ≥ |S|k /2, and if y ∈ L then∥∥∥∥∥S ∗ g − |S|k
k∑
i=1

τyig

∥∥∥∥∥
p

<
η

2 |S| ‖g‖p .

It follows that if (z, . . . , z) ∈ L − L, say z = yi − y′i for 1 ≤ i ≤ k, then by the triangle
inequality

‖τz(S ∗ g)− S ∗ g‖p ≤
∥∥∥∥∥τz(S ∗ g)− |S|

k

k∑
i=1

τyig

∥∥∥∥∥
p

+
∥∥∥∥∥S ∗ g − |S|k

k∑
i=1

τyig

∥∥∥∥∥
p

.
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The theorem follows since the translation operator τ is an isometry and τ−zτyi = τy′i for
1 ≤ i ≤ k.

To generate a set of almost-periods from the conclusion of Theorem 4.10 we need to
be able to produce some set X such that (x, . . . , x) ∈ L−L for all x ∈ X; this can be an
awkward matter since although L is dense inside Sk it need not resemble a product set
itself. Fortunately, if S has a reasonable amount of additive structure then this does force
L − L to contain a fairly large diagonal set.

Lemma 4.11. Let S and T be finite subsets of G such that |S + T | ≤ K |S|. Let L ⊂ Sk

be such that |L| ≥ |S|k /2. Then there exists u ∈ T and a set X ⊂ T − u such that

|X| ≥ (2K)−k |T |

and (x, . . . , x) ∈ L − L for all x ∈ X.

Proof. Let T̃ = {(t, · · · , t) : t ∈ T} ⊂ T k, and observe that
∣∣∣L+ T̃

∣∣∣ ≤ |S + T |k ≤ Kk |S|k.
In particular, by the Cauchy-Schwarz inequality,∥∥∥L ∗ T̃∥∥∥2

2
Kk |S|k ≥

(∑
x

L ∗ T̃ (x)
)2

= |T |2 |L|2 .

Furthermore, ∥∥∥L ∗ T̃∥∥∥2

2
= 〈T̃ ∗ (−T̃ ),L ∗ (−L)〉 =

∑
t1,t2∈T̃

L ∗ (−L)(t1 − t2),

and hence by averaging there are t ∈ T and X ⊂ T − t such that

|X| ≥ K−k |L| |S|−k |T | ≥ K−k |T | /2

and for all x ∈ X we have L ∗ (−L)(x̃) > 0 as required.

Lemma 4.11 is robust enough to be iterated to handle more general situations. For
the following lemma we suppose that G is an R-module for some ring R.

Lemma 4.12. Let S and T be finite subsets of G and let A ⊂ R∗ be any finite set.
Suppose that K ≥ 1 is such that |S + a · T | ≤ K |S| for all a ∈ A. Let L ⊂ Sk be such
that |L| ≥ |S|k /2. There exists some X ⊂ 〈T 〉 such that

|X| ≥ (2K)−k|A| |T |

and (ax, . . . , ax) ∈ 2|A|(L − L) for all x ∈ X and a ∈ A.
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Proof. We use induction on |A|; the case A = ∅ is trivial. Suppose then that |A| ≥ 1,
and fix any b ∈ A. By induction there is some u ∈ G and X ⊂ 〈T 〉 such that |X| ≥
(2K)−(|A|−1)k |T |, and for all a ∈ A\{b} we have (ax, . . . , ax) ∈ 2|A|−1(L − L). We now
apply Lemma 4.11 with T replaced by b ·X. It follows that there exists some bu′ ∈ b ·X
and b ·X ′ ⊂ b · (X − u′) such that

|X ′| = |b ·X ′| ≥ (2K)−k |X| ≥ (2K)−|A|k |T | ,

and furthermore (bx, . . . , bx) ∈ L − L for all x ∈ X ′.
It remains to observe that if x ∈ X ′ then x ∈ X − X, and hence (ax, . . . , ax) ∈

2|A|(L − L) for all a ∈ A′.

Combining Lemma 4.12 with the set L produced by Lemma 4.10 immediately yields
the following.

Theorem 4.13. Let S ⊂ G be a finite set and g ∈ Lp(G). Let T ⊂ G and A ⊂ R∗ be
finite sets, and K ≥ 2 be such that |S + a · T | ≤ K |S| for all a ∈ A. Then there exists
some X ⊂ 〈T 〉 such that

|X| ≥ exp
(
−O|A|

(
pη−2 logK

))
|T | ,

and for all x ∈ ∑a∈A a ·X

‖τx(S ∗ g)− S ∗ g‖p ≤ η |S| ‖g‖p .

Proof. By Theorem 3.18 there are k �|A| pη−2 and L ⊂ Sk such that |L| ≥ |S|k /2, and
if (x, . . . , x) ∈ L − L then

‖τx(S ∗ g)− S ∗ g‖p ≤ |A|
−1 2−|A|η |S| ‖g‖p .

By the triangle inequality if (z, . . . , z) ∈ 2|A|(L − L) then

‖τz(S ∗ g)− S ∗ g‖p ≤ |A|
−1 η |S| ‖g‖p .

By Lemma 4.12 there exist u ∈ G and X ⊂ T − u such that

|X| ≥ exp(−O|A|
(
pη−2 logK

)
) |T | ,

and for any a ∈ A and all x ∈ a ·X

‖τx(S ∗ g)− S ∗ g‖p ≤ |A|
−1 η |S| ‖g‖p .

The result follows from another application of the triangle inequality.
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4.2.2 Covering lemmata

We shall also need some well-known covering lemmata due to Ruzsa and Chang. We will
here prove a more abstract covering lemma of which both shall be simple corollaries; the
generality of Lemma 4.14 is more than we require for the main results of this chapter,
but we will indulge ourselves in a small digression.

Let
ΣkA =

{∑
x∈B

x : B ⊂ A and 1 ≤ |B| ≤ k

}
.

We say that A is k-dissociated if ΣkA has the maximum possible size (note that this differs
from the concept of Γ-dissociativity used in Chapter 3). In other words, A is k-dissociated
if whenever we have B1, B2 ⊂ A with 1 ≤ |B1| ≤ |B2| ≤ k and ∑x∈B1 x = ∑

y∈B2 y, then
B1 = B2. Finally, for any K ≥ 1 let fk(K) be the minimal n such that

k∑
i=1

(
n

k

)
> K.

We observe that the left hand side is precisely the cardinality of a k-dissociated set of size
n.

The proof of the following general covering lemma is a generalisation of the proofs of
the covering lemmata of Ruzsa [57] and Chang [13].

Lemma 4.14. Let S and A be finite subsets of G and let k1, . . . , kr, K1, . . . , Kr ≥ 1 be
parameters such that

|S + Σk1A+ · · ·+ ΣkrA| ≤ K1 · · ·Kr |S| .

Then there exist 1 ≤ s ≤ r and sets T1, . . . , Ts ⊂ A such that Ti is ki-dissociated for
1 ≤ i ≤ s,

A ⊂ S − S + Σk1T1 − Σk1T1 + · · ·+ ΣksTs − Σks−1Ts,

|ΣkiTi| = fki(Ki) for 1 ≤ i < s and |ΣksTs| ≤ Kj.

Proof. We say that 1 ≤ j ≤ r is good if there exist T1, . . . , Tj ⊂ A such that for
1 ≤ i ≤ j the set Ti is ki-dissociated and |ΣkiTi| > Ki, and furthermore if S0 = S and
Si = Si−1 + ΣkiTi for 1 ≤ i ≤ j then |Si| = |Si−1| |ΣkiTi|. In particular, for 1 ≤ i ≤ j we
have |Si| > Ki |Si−1|, and hence if j is good then

K1 · · ·Kj |S| < |Sj| ≤
∣∣∣S + Σk1A+ · · ·+ ΣkjA

∣∣∣ .
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It follows that r is not good; let 1 ≤ s ≤ r be minimal such that s is not good. Since
s− 1 is good there exist T1, . . . , Ts−1 ⊂ A such that Ti is ki-dissociated for 1 ≤ i < s and
if S0 = S and Si = Si−1 + ΣkiTi then |Si| = |Si−1| |ΣkiTi| for 1 ≤ i < s. We further have
that |ΣkiTi| > Ki; by removing elements from each Ti if necessary, we may suppose that
|ΣkiTi| = fki(Ki). Let Ts ⊂ A be a maximal set which is both ks-dissociated and such
that |Ss−1 + ΣksTs| = |Ss−1| |ΣksTs|.

Let x ∈ A\Ts and let T ′ = Ts ∪ {x}. By maximality either T ′ is ks-dissociated and
|Ss−1 + ΣksT

′| < |Ss−1| |ΣksT
′|, or there are distinct subsets U, V ⊂ T ′ of size at most ks

such that ∑
u∈U

u =
∑
v∈V

v.

In the former case there must be some s1, s2 ∈ Ss−1 and r1, r2 ∈ ΣksT
′ such that

s1+r1 = s2+r2. Since |Ss−1 + ΣksTs| = |Ss−1| |ΣksTs|, however, at least one of the elements
in the sum forming either r1 or r2 must be x, and hence x ∈ Ss−1−Ss−1 +ΣksTs−Σks−1Ts.
A similar conclusion follows from the second situation, using the fact that Ts is ks-
dissociated.

The above is rather abstract and general. For our purposes there are two simple
corollaries that will be useful, both of which have already appeared in the literature.
The simplest demonstration of Lemma 4.14 is to take r = 1 = k1 when we recover the
well-known covering lemma of Ruzsa [57].

Lemma 4.15. Suppose that |S + A| ≤ K |S|. Then there exists T ⊂ A with |T | ≤ K

such that
A ⊂ S − S + T.

Alternatively we may choose r = 1 and k1 = k to deduce the following lemma due to
Chang [13].

Lemma 4.16. Suppose that |S + kA| < 2k |S| and 0 ∈ A. Then there exists a dissociated
set T with |T | < k such that

A ⊂ S − S + 〈T 〉 − 〈T 〉.

Proof. This follows from Lemma 4.14 and the trivial observation that ΣkA ⊂ kA. It only
remains to observe that if T is dissociated and |T | ≥ k then 2k ≤ |ΣkT |.
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4.3 Covering structured sets

In this section we adapt the arguments of Sanders [63] to show that if |A+ A| and
|A+ t · A| are both small relative to |A| then A can be efficiently covered by a set
suitable for an application of Theorem 4.7. The arguments of [63] represent the best-
known approach to inverse sumset theorems at the time of writing, and are a synthesis
of arguments by Sanders, Schoen and Konyagin. The adaptation to a more general
arithmetic inverse theorem presented here is straightforward, but we present the proofs in
full detail. The main point of interest is that there are now two parameters, |A+ A| / |A|
and |A+ t · A| / |A|, and it emerges that the method is asymmetric in its treatment of these
parameters; the real cost is in the doubling parameter |A+ A| / |A|, and with this fixed
we are able to obtain polynomial type bounds in terms of the parameter |A+ t · A| / |A|.

We use the notation A◦ = A− A for any finite A ⊂ Fq[t]. The following lemma is a
generalisation of Proposition 4.2 from [62]. The field Fq is fixed throughout this section;
in particular, all implicit constants may depend on q, the size of the finite field.

Lemma 4.17. Let A, S and T be any finite subsets of Fq[t] such that Fq · T = T . Let
K1, K2 ≥ 4 be such that

|A+ S| ≤ K1 |A| and max(|S + T | , |S + t · T |) ≤ K2 |S| .

Then for any m ≥ 1 there is a set X ⊂ 〈T 〉 such that Fq ·X = X,

|X| ≥ exp(−O(m2 logK1 logK2)) |T |

and we have m(X + t ·X) ⊂ A◦ + S◦.

Proof. Let η > 0 and p ≥ 2 be parameters to be chosen later. By Theorem 4.13 there
exists a set X ′ such that

|X ′| ≥ exp(−O(pη−2 logK2)) |T | ,

and, if X = ∑
a∈Fq a ·X ′, then for all x ∈ m(X + t ·X),

‖τx(A+ S) ∗ (−S)− (A+ S) ∗ (−S)‖p ≤ mη |A+ S|1/p |S| .

In particular, by Hölder’s inequality, for all x ∈ m(X + t ·X),

|〈τx(A+ S) ∗ (−S), A〉 − 〈(A+ S) ∗ (−S), A〉| ≤ mη |A+ S|1/p |S| |A|1−1/p .
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Since 〈(A+ S) ∗ (−S), A〉 = |A| |S| this implies that for all x ∈ m(X + t ·X)

|(A+ S) ∗ (−S) ∗ (−A)(x)− |A| |S|| ≤ mηK
1/p
1 |A| |S| .

Choosing the parameters p = logK1 and η = 1/23m, say, implies that m(X + t ·X) ⊂
A◦ + S◦ as required.

Lemma 4.17 is already powerful enough to prove a strong inverse sumset theorem, and
the sumset analogue was a key component of the quantitative breakthrough of Sanders [62].
To demonstrate how we first show how containment of a large sumset can be combined
with the strong structural result Theorem 4.7 to prove an arithmetic inverse result.

Lemma 4.18. There exists an absolute constant C > 0 such that the following holds. Let
A and S be any finite subsets of Fq[t] such that |A+ S| ≤ K |A| for some K ≥ 4. Let
X ⊂ Fq[t] be a finite set such that Fq · X = X and |X| ≥ L−1 |A| for some L ≥ K8C.
Finally, suppose that

dC logKe(X + t ·X) ⊂ A◦ + S◦.

Then there is an arithmetic space V ⊂ 〈X〉 of arithmetic dimension d� logL such that
A is LO(1)-covered by V and |V | ≤ LO(1) |A|.

Proof. Let C > 0 be some constant to be chosen later, and m = dC logKe. We first
observe that by the Plünnecke-Ruzsa estimates for any n ≥ 1 we have |n(A◦ + S◦)| ≤
KO(n) |A|. In particular, for any n ≥ 1, since 3mn(X + t ·X) +X ⊂ 4n(A◦ + S◦) we have

|3mn(X + t ·X) +X| ≤ exp(O(n logK)) |A|

≤ exp(O(n logK))L |X|

< 2mn |X| ,

provided C is sufficiently large and logL ≤ 2−3C(logK)n. By the hypothesis on L we
may choose some suitable 1 ≤ n � logL/ logK, so that mn � logL. It follows from
Lemma 4.16 that there is a Fq-vector space T of dimension O(logL) such that

3(X + t ·X) ⊂ T + 2X.

We now consider the set X ′ = 2X. For any n ≥ 1 we have, by induction, n(X ′ + t ·X ′) ⊂
T +X ′, and hence

|n(X ′ + t ·X ′)| ≤ LO(1) |X ′| .
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Furthermore,

|X + A| ≤ |A+ A◦ + S◦| ≤ KO(1) |A| ≤ exp(O(logK + logL)) |X| ,

and hence by Lemma 4.15 the set A is LO(1)-covered by X ′. By Theorem 4.7 there is
an arithmetic space V ⊂ Fq[t] of arithmetic dimension O(logL) such that X ′ ⊂ V and
|V | ≤ LO(1) |X ′|, and the proof is complete.

Lemma 4.18 shows that, to obtain good quantitative bounds in our desired arithmetic
inverse result, the important thing to control is how large a set X we can take such that
the O(logK)-fold sumset of X + t ·X is contained in A◦ + S◦. Lemma 4.17 immediately
provides a suitable set X, and indeed, does so with very good bounds. Using this we
can prove the following result; the bounds match those obtained by Sanders [62] for
the analogous result over Z, and we again stress that the covering arguments we use in
converting the strong inverse result Theorem 4.7 to a more general inverse result are those
developed by Sanders.

The following result will be improved immediately afterwards, but we include it here
as a demonstration of the power of Lemma 4.17.

Theorem 4.19. Let A ⊂ Fq[t] be a finite set and K1, K2 ≥ 4 be such that

|A+ A| ≤ K1 |A| and
∑
α∈Fq
|A+ α · A|+ |A+ t · A| ≤ K2 |A| .

Then there is a d� (logK1)3 logK2 and an arithmetic space of arithmetic dimension at
most d such that A is exp(O(d))-covered by V and |V | ≤ exp(O(d)) |A|.

Proof. Let T = ∑
a∈Fq a · A. It is clear that a · T = T for all a ∈ Fq, and by the

Plünnecke-Ruzsa estimates we certainly have that

max(|A+ T | , |A+ t · T |) ≤ K
O(1)
2 |A| .

By Lemma 4.17 for any m� logK1 there is a set X ⊂ Fq[t] such that Fq ·X = X,

|X| ≥ exp(−O((logK1)3 logK2)) |A|

and m(X + t · X) ⊂ 2A◦. The theorem follows from Lemma 4.18 with L �
exp(O((logK1)3 logK2)).
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Theorem 4.3 follows immediately. It is possible, however, to improve the dependence
on K1, by a stunning application of the pigeonhole principle given by Konyagin and
expounded by Sanders [63], as we shall do now.

We first prove the following technical lemma.

Lemma 4.20. Let A, S and T be any finite subsets of Fq[t] such that Fq · T = T . Let
K1, K2 ≥ 4 be such that

|A+ S| ≤ K1 min(|A| , |S|) and max(|S + T | , |S + t · T |) ≤ K2 |S| .

Then for all integers m ≥ 1 there are sets S ′ and T ′ ⊂ 〈T 〉 such that Fq · T ′ = T ′,

|T ′| ≥ exp(−O(m2 logK1 logK2)) |T |

such that S ⊂ S ′ ⊂ A◦ + S◦ + S and

|S ′ + T ′ + t · T ′| ≤ K
O(1/m)
1 |S ′| .

Proof. An application of Lemma 4.17 yields some T ′ with Fq · T ′ = T ′,

|T ′| ≥ exp(−O(m2 logK1 logK2)) |T |

and m(T ′ + t · T ′) ⊂ A◦ + S◦. In particular, by the Plünnecke-Ruzsa estimates,

|S +m(T ′ + t · T ′)| ≤ |A◦ + S◦ + S| ≤ K
O(1)
1 |S| .

By the pigeonhole principle there exists 0 ≤ l < m with

|S + l(T ′ + t · T ′) + T ′ + t · T ′| ≤ K
O(1/m)
1 |S + l(T ′ + t · T ′)| .

The proof is complete, letting S ′ = S + l(T ′ + t · T ′).

A single application of Lemma 4.20, with m = 1, replaces the parameter K2 by K1,
while reducing the size of T by a factor of exp(−O(logK1 logK2)), which already allows
the (logK1)3 logK2 factor in Theorem 4.19 to be improved to (logK1)4 +(logK1)(logK2).
The real power of Lemma 4.20, however, lies in iteration, which will allow us to reduce
the (logK1)4 here to just shy of (logK1)3. We now prove the key lemma, which first
replaces K2 by K1 and then repeatedly applies Lemma 4.20 to reduce the size of K1 by an
exponential factor at each stage, until we halt in the best possible situation with K2 � 1.
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Lemma 4.21. Let A and B be finite subsets of Fq[t] such that Fq ·B = B. Let K1, K2 ≥ 4
be such that

|A+ A| ≤ K1 |A| and max(|A+B| , |A+ t ·B|) ≤ K2 |A| .

Then there is a positive integer r � (log logK1)log2 3, a set A−A ⊂ S ⊂ r(A−A), and a
set T ⊂ 〈B〉 such that Fq · T = T ,

|S + T + t · T | � |S| ,

and
|T | ≥ exp

(
−O

(
(logK1)3(log logK1)3 log2 3 + logK1 logK2

))
|B| .

Proof. Let mi be some sequence of positive integers to be chosen later, c be some absolute
constant (though it may depend on q) to be chosen later, and ni = (3i+1 − 1)/2. Define
the sequence ρi by letting ρ0 = c logK2 and ρi = cni logK1m

−1
i for i ≥ 1. We shall prove

by induction that for all i ≥ 0 we can find sets Si and Ti such that Fq · Ti = Ti,

1. A◦ ⊂ Si ⊂ niA
◦,

2. |Si + Ti + t · Ti| ≤ exp(ρi) |Si|, and

3. |Ti| ≥ exp
(
−O

(∑i−1
j=0 3im2

i+1ρi
)

logK1
)
|B|.

We begin the induction by letting S0 = A◦ and T0 = B, and the required estimates follow
from the Plünnecke-Ruzsa estimates, which imply that

|A− A+B + t ·B| ≤ K
O(1)
2 |A| ,

and hence the second condition follows provided c is sufficiently large. Suppose now that
i ≥ 0 and we have Si and Ti as above. We apply Lemma 4.20 with the parameters mi+1,
Si and Ti. By the Plünnecke-Ruzsa estimates we have

|A+ Si| ≤ |(ni + 1)A◦| ≤ K
O(3i)
1 |A| ,

and hence Lemma 4.20 yields Si+1 and Ti+1 such that Fq · Ti+1 = Ti+1 and

|Ti+1| ≥ exp
(
−O

(
3im2

i+1ρi
)

logK1
)
|Ti|
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as required. Furthermore, Si+1 ⊂ (1 + 3ni)A◦ = ni+1A
◦ and

|Si+1 + Ti+1 + t · Ti+1| ≤ exp(O(3i+1m−1
i+1) logK1) |Si+1| ≤ exp(ρi+1) |Si+1| ,

again provided c is chosen sufficiently large.
We now choose

mi = 3id(logK1)1−1/2i−1e for all i ≥ 1.

In particular, m2
i+1ρi � m2

i+1m
−1
i 3i logK1 � 32i(logK1)2 for i ≥ 1, and hence

|Ti| ≥ exp
(
−O

(
33i(logK1)3 + logK1 logK2

))
|B| .

Furthermore, if we choose n ≥ 1 such that 2n−1 ≥ log logK1 then mn � 3n logK1. It
follows that ρn � 1 and hence

|Sn + Tn + t · Tn| � |Sn|

as required. We may choose such an n such that 33n � (log logK1)3 log2 3 and the proof is
complete.

We now combine Lemmata 4.17, 4.18, and 4.21 to prove our strongest inverse result.

Theorem 4.22. Let A and B be finite subsets of Fq[t] such that Fq · B = B. Let
K1, K2 ≥ 4 be such that

|A+ A| ≤ K1 |A| , |A+B + t ·B| ≤ K2 |A| and |B| ≥ K−1
3 |A| .

Then there is an arithmetic space V ⊂ 〈B〉 of arithmetic dimension K ′ such that A is
exp(K ′)-covered by V and |V | ≤ exp(K ′) |A| for some

K ′ � (logK1)3(log logK1)3 log2 3 + logK1 logK2 + logK3.

Proof. By Lemma 4.21 there is an integer r � (log logK1)2, a set A◦ ⊂ S ⊂ rA◦, a set
T ⊂ 〈B〉 such that Fq · T = T and

|S + T + t · T | � |S|

and
|T | ≥ exp(−O((logK1)3(log logK1)3 log2 3 + logK1 logK2)) |B| .
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We now apply Lemma 4.17, with m to be chosen later, to give a set X ⊂ 〈B〉 such that
Fq ·X = X,

|X| ≥ exp(−O(m2 logK1(log logK1)log2 3)) |T |

≥ exp
(
−O

(
m2 logK1(log logK1)log2 3

+ (logK1)3(log logK1)3 log2 3 + logK1 logK2
))
|B|

and m(X+ t ·X) ⊂ A◦+S◦. In particular we have satisfied the hypotheses of Lemma 4.18
with K = exp(O(logK1(log logK1)log2 3)) and

logL� m2 logK1(log logK1)log2 3 + (logK1)3(log logK1)3 log2 3 + logK1 logK2 + logK3,

provided
m� logK1(log logK1)log2 3 + (logL)1/3.

A simple calculation shows that this is satisfied with our L for some

m� logK1(log logK1)log2 3 + (logK1 logK2)1/3 + (logK3)1/3.

The conclusion now follows from the conclusion of Lemma 4.18, and the observation
that by the Plünnecke-Ruzsa estimates we can, without loss of generality, assume that
K1 ≤ K

O(1)
2 .

Theorem 4.22 is already a quantitatively strong arithmetic inverse theorem for Fq[t].
The following corollary is, however, a simpler version which will be sufficient for many
applications.

Corollary 4.23. Let A ⊂ Fq[t] be a finite set and K1, K2 ≥ 4 are such that

|A+ A| ≤ K1 |A| , |A+ α · A| ≤ K2 |A| for all α ∈ Fq and |A+ t · A| ≤ K2 |A| .

Then there is an arithmetic space V ⊂ 〈A〉 of arithmetic dimension at most K ′ such that
A is exp(K ′)-covered by V and |V | ≤ exp(K ′) |A| for some

K ′ � (logK1)3(log logK1)3 log2 3 + logK1 logK2.

Proof. We apply Theorem 4.22 with B = ∑
α∈Fq α · A and observe that the necessary

control on the additive growth follows from the Plünnecke-Ruzsa estimates.
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We remark that when Fq = Fp for some prime p the hypothesis |A+ α · A| ≤ K2 |A|
can be discarded by the Plünnecke-Ruzsa estimates, since α · A ⊂ pA and we can replace
K2 by max(K2, K

O(p)
1 ) without affecting the strength of the conclusion.

For the application in the following section it is more convenient to use an alternative
form, which follows by a standard covering argument. We recall that an Fq[t]-arithmetic
progression is a set of the form a · Fq[t]n + x for some n ≥ 0 and a, x ∈ Fq[t].

Corollary 4.24. Let A ⊂ Fq[t] be a finite set and K1, K2 ≥ 4 are such that

|A+ A| ≤ K1 |A| , |A+ α · A| ≤ K2 |A| for all α ∈ Fq and |A+ t · A| ≤ K2 |A| .

Then there exists a Fq-vector space T ⊂ 〈A〉 of dimension at most K ′ such that A−A+T

contains an Fq[t]-arithmetic progression P of size |P | � |A|1/K
′
for some

K ′ � (logK1)3(log logK1)3 log2 3 + logK1 logK2.

Proof. Let V be the arithmetic space given by Corollary 4.23, and K ′ be the given
parameter. Since A is exp(K ′)-covered by V , we have for any k ≥ 1 the bound |A+ kV | ≤
exp(K ′) |V |. By Lemma 4.16 there exists a finite Fq-vector space T ⊂ 〈A〉 of dimension
O(K ′) such that V ⊂ A−A+ T . The proof is complete after observing that since V has
arithmetic dimension at most K ′ it contains an arithmetic progression of size at least
|V |1/K

′
.

4.4 Transcendence and adding

We now present an application of the inverse theorems we have proven, which is an
Fq[t]-analogue of a problem first considered by Konyagin and Łaba [35]. Let A be a
finite subset of R and ξ be any transcendental element. When A ⊂ Q it is clear that the
only additive relations of the shape a1 + ξa2 = a3 + ξa4 are the trivial ones, and hence
|A+ ξ · A| = |A|2; indeed, this holds even if ξ is irrational. For general A ⊂ R, we may
have some non-trivial relations, but if ξ is transcendental then there should be relatively
few, and hence we should be able to provide some non-trivial lower bound for |A+ ξ · A|.

Konyagin and Łaba proved that |A+ ξ · A| � (log |A|)1−o(1) |A|. Sanders [59] later
observed that such lower bounds can be obtained by combining simple modelling arguments
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with an inverse sumset result. Using such an argument with the sharpest known form of
such an inverse result, Sanders [62] improved this lower bound to

|A+ ξ · A| � exp(O((log |A|)c)) |A|

for some absolute constant c > 0. An example by Green, given in [35], shows that this
is almost the best possible result. Namely, if one takes A = {∑m

i=1 aiξ
i : 1 ≤ ai ≤ n} for

suitable choices of n and m then one can show that

|A+ ξ · A| � exp(O((log |A|)1/2)) |A| .

We now consider this problem in the non-archimedean setting, with R replaced by
k, which is the completion of the rational function field Fq(t). Since transcendence over
Fq[t] is the obvious analogue of transcendence over Z, one might hope for similar lower
bounds to the above to hold for |A+ ξ · A| when A is any finite subset of k and ξ ∈ k is
any element transcendental over Fq[t].

A moment’s thought shows that this is too ambitious; indeed, the analogue of the
example outlined above already dashes our hopes. In particular, if A = {∑n

i=0 aiξ
i : ai ∈

Fq} then it is easy to show that |A+ ξ · A| ≤ q |A|. Recalling that we take Fq to be fixed,
this is essentially a constant upper bound, and hence no non-trivial lower bound can be
given.

On examination of this example, however, some hope returns – for since such a set is
contained in Fq[ξ] and ξ is transcendental over Fq[t] we have |A+ t · A| � |A|2. Thus one
might hope that if A ⊂ k does not grow when added to its dilation by some transcendental
element, then this forces growth when added to its dilation by t.

The construction above is easily adapted to such a situation. Consider the set
A = {∑n

i=1 aiξ
i : ai ∈ Fq[t]m}. It is easy to show that |A| = qnm and |A+ t · A| = qn |A|.

Furthermore, |A+ ξA| = qm |A|. It follows that if |A+ t · A| = K1 |A| and |A+ ξ · A| =
K2 |A| then (logK1)(logK2) ≈ log |A|.

This should be compared to the case A ⊂ R, when we study the single parameter K
given by |A+ ξ · A| = K |A| and our construction gives a set A with (logK)2 ≈ log |A|.
Thus we see that in the analogous situation in Fq[t] there is a ‘splitting’ of the parameter
K into two distinct parameters, and we may now ask for non-trivial lower bounds on the
size of such parameters.
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By combining our inverse results for Fq[t] with the argument of Sanders [59] we are
able to prove such a result. Namely, we show that if ξ ∈ k is transcendental over Fq[t]
and A ⊂ k is a finite set with |A+ t · A| = K1 |A| and |A+ ξ · A| = K2 |A| then either

min(logK1, logK2)� (log |A|)1/6−o(1) or (logK1)(logK2)� (log |A|)1/2.

In particular, we always have max(logK1, logK2)� (log |A|)1/6−o(1), which is a similar
result to that obtained in the problem over R.

Following [59], we first prove the following simple consequence of the Plünnecke-Ruzsa
estimates.

Lemma 4.25. Let A ⊂ k be any finite set. If ξ ∈ k\{0} and |A+ ξ · A| ≤ K |A| then for
all ` ≥ 1 ∣∣∣A− A+ ξ(A− A) + · · ·+ ξ`−1(A− A)

∣∣∣ ≤ KO(`) |A| .

Proof. Let A′ = A− A and B′ = ξ(A− A). By the Plünnecke-Ruzsa estimates we have,
for all k ≥ 1, the upper bounds |kB′| = |kA′| ≤ KO(k) |A|. In particular, |3A′ − 3A′| ≤
KO(1) |A|. By Corollary 4.15 there is some S with |S| ≤ KO(1) such that

3A′ − 2A′ ⊂ A′ − A′ + S.

Similarly, there is some T with |T | ≤ KO(1) such that ξ · A ⊂ A− A + T , and hence if
T ′ = 2T − T then |T ′| ≤ KO(1) and B′ ⊂ A′−A′ + T ′. We define a sequence of sets T` by
T1 = {a} for some a ∈ A′ and T`+1 = S + T ′ − T ′ + ξ · T`. We claim that, for all ` ≥ 1,

A′ + ξ · A′ + · · ·+ ξ`−1 · A′ ⊂ A′ − A′ + T`.

This certainly holds for ` = 1. Suppose that this inclusion holds for ` ≥ 1; then

A′ + · · ·+ ξ` · A′ ⊂ A′ + ξ · (A′ − A′ + T`)

= A′ +B′ −B′ + ξ · T`
⊂ 5A′ + T ′ − T ′ + ξ · T`
⊂ A′ − A′ + S + T ′ − T ′ + ξ · T`

as required. The result follows from the Plünnecke-Ruzsa estimates and the trivial bound
|T`| � KO(`).
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We now use Lemma 4.25 and Corollary 4.24 to prove the main result.

Theorem 4.26. Let A ⊂ k be a finite set. Suppose that ξ1 and ξ2 are algebraically
independent over Fq, and that K1, K2 ≥ 2 are such that

|A+ ξ1 · A| ≤ K1 |A| and |A+ ξ2 · A| ≤ K2 |A| .

Then either
min(logK1, logK2)�q

(log |A|)1/6

(log log |A|)log2 3

or
(logK1)(logK2)�q (log |A|)1/2.

Proof. Without loss of generality, we may suppose that K2 ≤ K1 and that 0 ∈ A, so that
A∪ ξ2 ·A ⊂ A+ ξ2 ·A. By the Plünnecke-Ruzsa estimates we have that |A+ A| ≤ K2

2 |A|.
Since A∪ ξ2 ·A is finite it is contained in a finite-dimensional Fq[ξ1]-module, say Fq[ξ1]d · v.
For some large integer N we consider the map f : Fq[ξ1]d · v → Fq[ξ1] defined by

f(x1v1 + · · ·+ xdvd) = x1 + x2ξ
N
1 + · · ·+ xdξ

N(d−1)
1 .

AssumingN is sufficiently large, depending on A∪ξ2·A, we have that, for all x, y ∈ A∪ξ2·A,

f(x) + f(y) = f(x′) + f(y′) implies x+ y = x′ + y′

and
f(x) + ξ1 · f(y) = f(x′) + ξ1 · f(y′) implies x+ ξ1y = x′ + ξ1y

′.

In particular, if A′ = f(A ∪ ξ2 · A) then, by the Plünnecke-Ruzsa estimates,

|A′ + A′| ≤ |A+ A+ ξ2 · A+ ξ2 · A| ≤ K
O(1)
2 |A|

and
|A′ + ξ1 · A′| ≤ |A+ ξ2 · A+ ξ1 · A+ ξ1ξ2 · A| ≤ K

O(1)
1 |A| .

We observe that in the proof leading to Corollary 4.24 all that was used was that t was
transcendental over Fq; in particular, the conclusion is equally valid replacing Fq[t] = Fq[t]
by Fq[ξ1]. Hence there exists a Fq-vector space T ⊂ Fq[ξ1] of dimension at most K ′ such
that A′−A′+T contains a Fq[ξ1]-arithmetic progression P of size |P | � |A′|1/K

′
for some

K ′ � (logK2)3(log logK2)3 log2 3 + (logK1)(logK2).
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We observe that, since f is an Fq-isomorphism on 〈A′〉 the set f−1(T ) is also a Fq-vector
space, and furthermore f−1(P ) is also a Fq[ξ1]-arithmetic progression. Applying the inverse
map f−1 this implies that there is a progression P ′ ⊂ k of size at least |P | � |A|1/K

′
such

that
P ′ = f−1(P ) ⊂ f−1(A′ − A′ + T ) ⊂ A− A+ ξ2 · A− ξ2 · A+ f−1(T ).

In particular, for any l ≥ 1,∣∣∣P ′ + ξ2
2 · P ′ + · · ·+ ξ

2(l−1)
2 · P ′

∣∣∣ ≤ qlK
′
∣∣∣(A− A) + ξ2 · (A− A) + · · ·+ ξ2l−1

2 · (A− A)
∣∣∣ .

Since ξ2 is transcendental over Fq[ξ1], however, the left hand side is at least |P ′|l. Fur-
thermore, by Lemma 4.25 the right hand side is at most (qK′KO(1)

2 )l |A|. It follows
that

|A|O(l/K′)−1 ≤ qlK
′
.

Hence we can choose l � K ′ such that |A| ≤ qO(K′2), and hence

log |A| � (logK2)6(log logK2)6 log2 3 + (logK1)2(logK2)2,

and the theorem follows.
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chapter 5

SUM-PRODUCT ESTIMATES FOR NON-ARCHIMEDEAN FIELDS

All work in this chapter is joint work with Timothy G. F. Jones and most has been
published in [5].

We recall that δ is permissible for a collection of finite sets A if for all ε > 0 there
exists a constant Cε > 0 such that for all A ∈ A

max(|A+ A| , |AA|) ≥ Cε |A|1+δ−ε .

The sum-product heuristic then says that if A is some reasonable collection of finite
subsets of any ring then 1 is permissible for A; this is clearly the best possible. For a
more thorough discussion of the sum-product phenomenon we refer to the introduction.
We recall, however, that it is known that 1/3 is permissible for all finite subsets of C
[72, 36] and that for any finite field of prime order Fp the constant 1/11 is permissible for
all A ⊂ Fp such that |A| < p1/2 [53].

In this chapter we will prove new sum-product estimates for non-archimedean local
fields, which have not thus far been considered in the sum-product literature. We recall
that a non-archimedean local field is a locally compact topological field F equipped
with a non-archimedean absolute value; that is, an absolute value |·| : F → R such that
|x+ y| ≤ max(|x| , |y|) for all x, y ∈ F . More concretely any non-archimedean local field
is either a finite extension of Qp for some prime p or a field of Laurent series Fq((t−1)) for
some finite field Fq.

We will show that for finite subsets of such fields 1/5 is permissible. Since the only
archimedean local fields are R and C this result, combined with the fact that 1/3 is
permissible for C, implies the following.

Theorem 5.1. Let F be any local field and let ε > 0. For any finite A ⊂ F we have

max(|A+ A| , |AA|)�F,ε |A|6/5−ε .

Since Fq[t], a polynomial ring over a finite field, is contained in a non-archimedean
local field our result is also valid for any finite set of such polynomials, with an implied
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constant dependent on q. This should be compared to the result of Croot and Hart [15],
that there exists an absolute constant δ > 0 which is permissible for all finite subsets of
C[t]; our methods are not robust enough to apply to C[t] since they rely crucially on the
finiteness of the residue field. On the other hand, we are able to give the fairly large and
explicit exponent of 1/5 for Fq[t].

The exponent of 1/5 for non-archimedean local fields lies between the 1/11 known for
finite fields and the 1/3 known for the archimedean local fields R and C. It is natural
to conjecture, as for the archimedean local fields R and C, that the correct answer for
non-archimedean local fields is 1.

Aside from their intrinsic interest sum-product results over Fq[t] may have applications
to constructions in theoretical computer science. Sum-product results over finite fields
have been used to construct efficient randomness extractors; see for example the work of
Bourgain in [7] and [8]. A key idea in these constructions is the observation that a string
of n bits can be interpreted as an element of the field F2n so that the full power of the
sum-product machinery can be brought to bear. An alternative is to interpret it as an
element of F2[t]. Given that the sum-product results now available in F2[t] are better than
those in F2n (with an exponent of 1/5 rather than 1/11) we expect that constructions
along a similar line to those in [7] will be quantitatively stronger over F2[t] than over F2n .

For number theoretic and geometric applications it is worth pointing out that any
global function field, that is, a field of transcendence degree 1 over a finite field, can be
embedded into Fq((t−1)) for some q, where q depends only on the field of constants and
genus of the function field. In particular the conclusion of Theorem 5.1 will also hold for
any finite subset of a global function field.

We now state our main results and some immediate corollaries. Let F be a non-
archimedean local field with a non-archimedean absolute value |·|. We define the ring of
integers to be O = {a ∈ F : |a| ≤ 1} and let m = {a ∈ F : |a| < 1}. We then define the
residue field of F to be O/m – crucially, because this field is both compact and discrete,
it is finite.

Theorem 5.2. Let F be a non-archimedean local field with a residue field of size q. Let
A, B and D be any finite subsets of F . Then

q |A+B|3 |AD|2 � |A|3 |B|2 |D|
(log |B|)2(log |A|)4 ,
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where the implied constant is absolute.

Theorem 5.1 is an immediate corollary. We observe that the dependence on q here
is the best possible, which follows from considering the set A = Fq ⊂ Fq((t−1)). This
contrasts with the finite field setting, where we think of q as being large. Clearly any finite
field sum-product result for which the constants depended on q would be meaningless,
since we could write everything as Oq(1).

We also have the following corollary.

Corollary 5.3. Let F be a non-archimedean local field with a residue field of size q. Let
A be any finite subset of F . If |A+ A| ≤ K |A|, then for any finite D ⊂ F and any ε > 0

|AD| �q,K,ε |A|1−ε |D|1/2 ,

and if |AA| ≤ K |A|, then for any finite B ⊂ F and any ε > 0

|A+B| �q,K,ε |B|2/3−ε |A|2/3−ε .

When A, B, and D are sets of integers a similar result was proved with the best
possible exponents by Chang [14].

For many applications it is more convenient to work with a more flexible measure of
multiplicative structure than |AD|. In particular, let E×(A,D) denote the number of
(a, a′, d, d′) ∈ A2 ×D2 such that ad = a′d′. Our methods allow us to prove the following
energy sum-product result.

Theorem 5.4. Let F be a non-archimedean local field with a residue field of size q. Let
A, B and D be any finite subsets of F . Then

q |D|9 |A|7 |B|−2 |A+B|3 � E×(A,D)6

(log |B|)2(log |A|)4 ,

where the implied constant is absolute.

This should be compared to the main result of Solymosi [71], who showed that for any
finite A,D ⊂ Z we have |A+ A| |D +D| � E×(A,D)/ log |D|.

We note that by the Cauchy-Schwarz inequality |A|2 |D|2 ≤ |AD|E×(A,D), and hence
Theorem 5.4 delivers a sum-product exponent of 1/9, which is weaker than the 1/5 given
by Theorem 5.2. For some applications to exponential sums (such as that in Section 5.3),
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however, the ability to directly bound the multiplicative energy can be very useful, since
in general one cannot deduce upper bounds for E×(A,D) from lower bounds for |AD|,
and hence Theorem 5.4 is, in a sense, qualitatively stronger than Theorem 5.2.

The approach used here is based on a geometric argument used by Solymosi [71] to
show that 1/4 is permissible for finite subsets of the complex numbers, coupled with some
unique structural properties of non-archimedean geometry.

The rest of the chapter is structured as follows. The first section collects some necessary
background on non-archimedean geometry. The second section introduces the crucial
concept of a separable set and uses it with a generalisation of the argument of [71] to
deduce our results. We conclude by demonstrating how the quantitative strength of such
results can be exploited by generalising to local fields a result on exponential sums due to
Bourgain, Glibichuk, and Konyagin [11].

5.1 Preliminaries

Let F be a non-archimedean local field equipped with a non-archimedean norm |·|. In
particular, for all x, y ∈ F we have |x+ y| ≤ max(|x| , |y|), and furthermore |x| = |−x|.
Both of these properties will be used frequently without further mention. Since F is
non-archimedean it has a very rigid geometry, which we will be able to exploit when
proving our sum-product estimates. A particular concern will be the behaviour of balls,
which are sets of the shape

B(x, r) = {y ∈ F : |x− y| ≤ r} for some x ∈ F and r ∈ R+.

We will call r the radius of the ball B(x, r). The fact that F is non-archimedean implies
the following standard result.

Lemma 5.5. If B1 and B2 are balls in F then either they are disjoint, or B1 ⊆ B2, or
B2 ⊆ B1. If in addition B1 and B2 have the same radius then either they are disjoint or
B1 = B2.

Proof. Let B1 = B(x, r) and B2 = B(y, s). If there exists a ∈ B(x, r) ∩B(y, s) then

|x− y| ≤ max {|a− x| , |a− y|} ≤ max {r, s} .
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If r ≤ s this implies that B(x, r) ⊆ B(y, s) since if b ∈ B(x, r) then

|y − b| ≤ max {|y − x| , |b− x|} ≤ max {r, s} = s.

Conversely if s ≤ r then B(y, s) ⊆ B(x, r). In particular, if r = s then B(x, r) =
B(y, s).

We shall prove a general result concerning partial product sets, of which the results in
the introduction are immediate corollaries. If G ⊂ A×D then the partial product set is
defined by A G· D = {ad : (a, d) ∈ G}. We will prove the following theorem.

Theorem 5.6. Let F be a non-archimedean local field with a residue field of size q. Let
A, B and D be any finite subsets of F and G ⊂ A×D. Then

q |D|3 |A| |B|−2 |A+B|3
∣∣∣∣A G· D

∣∣∣∣2 � |G|4

(log |B|)2(log |A|)4 ,

where the implied constant is absolute.

Theorem 5.2 follows immediately upon taking G = A×D. For Theorem 5.4 we invoke
the following simple consequence of the pigeonhole principle; see, for example, Lemma
2.30 of [75].

Lemma 5.7. Let A and D be any finite subsets of F . There exists a graph G ⊂ A×D
such that

|G| � E×(A,D)
|A|1/2 |D|1/2

and ∣∣∣∣A G· D
∣∣∣∣� |A|2 |D|2

E×(A,D) ,

where the implied constant is absolute.

The proof of Theorem 5.6 builds upon an approach of Solymosi [71] for sum-products
in C, which shows that 1/4 is permissible for all finite subsets of C. When adapting this
method to our problem the non-archimedean geometry is a mixed blessing.

First, the bad news. Solymosi’s argument fails at a critical point in the non-archimedean
setting, for the following reason. For each a ∈ A, let a′ ∈ A \ {a} be such that |a− a′|
is minimal, and let Ba be the ball of radius |a− a′| centred on a. Solymosi’s argument
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uses the crucial fact that a single complex number can be contained in at most O(1)
of the Ba. This fails spectacularly in F , where an element could be contained in as
many as |A| of the Ba, as demonstrated by the following example: let F = Fq((t−1)) and
A = {tj : 0 ≤ j ≤ n}, so that

Btj =
{
x ∈ F : |x| ≤ qj

}
for j ≥ 1 and B1 = Bt, meaning that every one of the |A| balls contains 0 as an element.

But all is not lost. In the example above we actually have |A+ A| ≈ |A|2, and so a
strong sum-product estimate holds despite the failure of Solymosi’s argument. In fact we
will be able to show that something like this is possible whenever Solymosi’s argument
fails, by considering a special type of structure to be defined in the following section:
separable sets.

Separable sets have a paucity of additive structure – so much so, in fact, that the
sumset of a separable set has almost maximal size. The idea is to show that a large
separable set must exist whenever Solymosi’s argument fails. Combining this with an
analysis of separable sets as having large sumsets will lead to a proof of Theorem 5.6.

The following section analyses separable sets and shows that their sumsets have
maximal growth. We will then adapt Solymosi’s proof from [71] to establish that if the
sumset and product set are both small then there must exist a large separable set, and
use this to prove Theorem 5.6.

5.2 Separable sets and chains

A finite set A ⊂ F is separable if its elements can be indexed as A = {a1, . . . , a|A|} in such
a way that for each 1 ≤ j ≤ |A| there is a ball Bj with A ∩Bj = {a1, . . . , aj}.

Lemma 5.8. If A ⊂ F is a finite separable set then |kA| ≥ (k!)−2 |A|k for any k ≥ 1.

Proof. Let E2k(A) denote the k-fold additive energy of A, i.e. the number of solutions to

a1 + . . .+ ak = b1 + . . .+ bk (5.1)

with ai, bi ∈ A. By the Cauchy-Schwarz inequality |A|2k ≤ |kA|E2k(A), and so it suffices
to show that E2k(A) ≤ (k!)2 |A|k.
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Let {a1, . . . , a|A|} be an ordering of A such that for 1 ≤ j ≤ |A| there is a ball Bj such
that Bj ∩A = {a1, . . . , aj}. It suffices to show that there are at most |A|k many solutions
to (5.1) such that a1 ≤ · · · ≤ ak and b1 ≤ · · · ≤ bk with respect to this ordering of A, for
E2k(A) is at most (k!)2 multiplied by the number of such solutions. Suppose that there
exists some 1 ≤ i ≤ k such that ai 6= bi, and let such i be maximal. It follows that

a1 + · · ·+ ai = b1 + · · ·+ bi.

We may suppose, without loss of generality, that ai < bi. Let B = B(x, r) be a ball such
that aj ∈ B for 1 ≤ j ≤ i and bj ∈ B for 1 ≤ j < i, but bi 6∈ B. It follows that

|bi − x| = |ai + · · ·+ a1 − bi−1 − · · · − b1 − x|

= |(ai − x) + · · ·+ (a1 − x)− · · · − (b1 − x)|

≤ max (|ai − x| , . . . , |b1 − x|)

≤ r,

and hence bi ∈ B, which is a contradiction. We must therefore have ai = bi for all
1 ≤ i ≤ k, and hence E2k(A) ≤ (k!)2 |A|k and the proof is complete.

The driving force of our argument is the following lemma, which shows that if the
sum and product set of A are both small then A must contain a large separable set.
For this we adapt the argument of [71] (used there for the archimedean field C) to
the non-archimedean setting. We remark that all of the analysis in the proof below is
non-archimedean; indeed some of the facts of non-archimedean geometry deployed here
are manifestly false in C.

A couple of new definitions are required. For a finite set A ⊂ F and an element a ∈ A,
define rA(a) = mina′∈A\{a} |a− a′| and BA(a) = B(a, rA(a)). Additionally, for any n ≥ 1
we say that C = (c1, . . . , cn) ∈ An is an A-chain of length n if ci 6= cj for 1 ≤ i < j ≤ n

and BA(c1) ⊆ · · · ⊆ BA(cn).
The following argument, a strengthened form of that found in [71], finds a large chain

in A as long as the sumset and partial product set are both small. If this condition were
to fail then a suitable sum-product result would follow immediately.

We recall the notation N ≈ k for k ≤ N < 2k.
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Lemma 5.9. Let A, B and D be any finite subsets of F and G ⊂ A × D. Then A

contains an A-chain of cardinality

N � |G|4 |B|

|A| |D|3 |A+B|2
∣∣∣∣A G· D

∣∣∣∣2 (log |A|)4
.

Proof. For any d ∈ D let Gd = {a ∈ A : (a, d) ∈ G}. For each a ∈ A and d ∈ D write
Nd(a) for the maximal length N of an A-chain C = (c1, . . . , cN) for which cN = a and
ci ∈ Gd for 1 ≤ i ≤ N . We observe that Nd(a) ≤ |BA(a) ∩Gd|, since if (c1, . . . , cN) is
such a maximal A-chain then ci ∈ Gd for 1 ≤ i ≤ N by definition and for each c ∈ C we
have c ∈ BA(c) ⊆ BA(a).

We begin with some preliminary pigeonholing. Let D′ be the set of d ∈ D such that
|Gd| ≥ |G| /2 |D|. We observe that

|G| =
∑
d∈D
|Gd| ≤ |D|

|G|
2 |D| + |D′| |A|

and hence |D′| ≥ |G| /2 |A|.
Fix some d ∈ D′ and for 0 ≤ j ≤ log2 |A| define Ad(j) to be the set of a ∈ Gd for

which Nd(a) ≈ 2j. Since the sets Ad(j) form a partition of Gd there exists some jd for
which |Ad(jd)| � |G| / |D| log |A|. Let 2jd = kd and Ad(jd) = Ad, so that for all a ∈ Ad
we have Nd(a) ≈ kd.

We now perform another dyadic pigeonholing over D′ itself. For 0 ≤ i ≤ log2 |A| let
D′i be the set of d ∈ D′ such that kd ≈ 2i. Once again, since the sets D′i form a partition
of D′ there exists some D′′ such that |D′′| � |G| / |A| log |A| and an integer k such that
kd ≈ k for all d ∈ D′′. It suffices to show that

k � |G|4 |B|

|A| |D|3 |A+B|2
∣∣∣∣A G· D

∣∣∣∣2 (log |A|)4
.

To this end, we say that a pair (a, c) ∈ A×B is d-additively good if

|(A+B) ∩ (BA(a) + c)| ≤ 16k |A+B|
|Ad|

,

and that (a, d) ∈ G is multiplicatively good if

∣∣∣∣(A G· D) ∩ (BA(a) · d)
∣∣∣∣ ≤ 16k

∣∣∣∣A G· D
∣∣∣∣

|Ad|
.
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We say that a quadruple (a, b, c, d) ∈ A× A×B ×D′′ is good if a ∈ Ad, b ∈ BA(a) ∩Gd,
(a, c) is d-additively good and (a, d) is multiplicatively good. Let Q be the number of
good quadruples. We shall bound Q from below to obtain

Q� k |G| |D′′| |B|
|D| log |A| (5.2)

and bound it from above to obtain

Q�
k2 |A+B|2

∣∣∣∣A G· D
∣∣∣∣2 |D|2 (log |A|)2

|G|2
. (5.3)

Comparing these bounds yields the the required bound on k since |D′′| � |G| / |A| log |A|.
We shall first establish (5.2). For any d ∈ D′′\{0} we have, by rearranging the

summation, that
∑
a∈Ad

∣∣∣∣(A G· D) ∩ (BA(a) · d)
∣∣∣∣ =

∑
v∈(A

G
·D)·d−1

|Cd(v)|

where Cd(v) is the set of a ∈ Ad with v ∈ BA(a). We observe that, for any v, the elements
of Cd(v) may be ordered to form an A-chain. This follows from Lemma 5.5 since for any
x, y ∈ Cd(v) we have v ∈ BA(x)∩BA(y) and so either BA(x) ⊆ BA(y) or BA(y) ⊆ BA(x).
In particular, since cn ∈ Ad and ci ∈ Gd for 1 ≤ i ≤ n we have |Cd(v)| ≤ Nd(cn) < 4k.
We therefore have ∑

a∈Ad

∣∣∣∣(A G· D) ∩ (BA(a) · d)
∣∣∣∣ < 4k

∣∣∣∣A G· D
∣∣∣∣

and hence there are at least 3 |Ad| /4 many a ∈ Ad for which (a, d) is multiplicatively
good. By an analogous argument for fixed c ∈ A there are at least 3 |Ad| /4 elements
a ∈ Ad for which (a, c) is d-additively good.

It follows that for any fixed d ∈ D′′ and c ∈ B there are at least |Ad| /2 elements a ∈ Ad
such that (a, c) is d-additively good and (a, d) is multiplicatively good. Furthermore,
for each a ∈ Ad there are at least k many b ∈ Gd such that b ∈ BA(a) ∩ Gd since
k ≤ Nd(a) ≤ |BA(a) ∩Gd|. It follows that

Q�
∑
d∈D′′

∑
c∈B

k |Ad| �
k |G| |D′′| |B|
|D| log |A|

as required.
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We now prove (5.3). We observe, and this is the key observation of [71], that the map

(a, b, c, d) 7→ (a+ c, b+ c, ad, bd)

is injective and so it suffices to bound the number of possibilities for this latter expression,
subject to the constraint that (a, b, c, d) is good. There are certainly at most |A+B|
possibilities for a+ c and at most

∣∣∣∣A G· D
∣∣∣∣ for ad, so it suffices to show that if these are

fixed then there are at most � k |A+B| |D| log |A| / |G| possibilities for b + c and at
most � k

∣∣∣∣A G· D
∣∣∣∣ |D| log |A| / |G| for bd. We shall prove this for b+ c; the argument for

bounding the number of possible bd is similar.
We first observe that if a+ c = a′ + c′ then either

BA(a) + c ⊆ BA(a′) + c′ or BA(a′) + c′ ⊆ BA(a) + c,

since both sets are balls with the same centre a+ c. As a consequence, if G′ ⊆ A×B is
the set of d-additively good pairs (a, c) for any d ∈ D′′, then for any x ∈ A

G′

+B there is a
fixed pair (ax, cx) which is d-additively good for some d ∈ D′′ such that

BA(a) + c ⊆ BA(ax) + cx

whenever a+ c = x and (a, c) is d-additively good for any d ∈ D′′. Thus if a+ c = x is the
fixed first co-ordinate and b+ c is a possible second co-ordinate then since b ∈ BA(a) ∩ A
and c ∈ B we have

b+ c ∈ (A+B) ∩ (BA(a) + c)

⊆ (A+B) ∩ (BA(ax) + cx) .

Since (ax, cx) is d-additively good for some d ∈ D′′, there are, as required, at most
� k |A+B| |D| log |A| / |G| possibilities for b+ c, which concludes the proof.

The following result shows that any chain contains a large separable subset, allowing
Lemma 5.8 to be applied to the chain found by Lemma 5.9.

Lemma 5.10. Let q be the size of the residue field of F and let A be any finite subset of
F . If C is the set of elements of an A-chain then C contains a separable set of cardinality
at least |C| /q.
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Proof. It is clear that any subset {c1, . . . , cn} ⊆ C with

BA(c1) ( . . . ( BA(cn)

is separable. Define an equivalence relation on elements of A by a ∼ b if and only if
BA(a) = BA(b). To prove the lemma it suffices to show that each equivalence class
contains at most q elements of A.

We first observe that if a ∼ b and a 6= b then |a− b| = rA(a) = rA(b). Indeed, since
BA(a) = BA(b) it follows that b ∈ BA(a) and so |a− b| ≤ rA(a). By minimality, however,
|a− b| ≥ rA(a) and so |a− b| = rA(a).

Suppose, for a contradiction, that there is an equivalence class containing distinct
elements a1, . . . , aq+1. It suffices to show that there are distinct i, j, k in {1, . . . , q + 1}
such that

|ak − aj| 6= |ak − aj| ,

for this contradicts the previous paragraph, as both must be equal to rA(ak). Considering
the differences bi = a1 − ai+1 for 1 < i ≤ q + 1 this follows from the fact that for
any b1, . . . , bq ∈ F ∗ such that |b1| = · · · = |bq| there exist 1 ≤ i < j ≤ q such that
|bi − bj| < |bj|.

This fact, in turn, follows from the assumption that the residue field has cardinality q.
We recall that the residue field is defined as O/m, where

O = {x ∈ F : |x| ≤ 1} and m = {x ∈ F : |x| < 1}.

Without loss of generality, we may suppose that |bi| = 1 for 1 ≤ i ≤ k. Since |O/m| = q

by the pigeonhole principle there must exist 1 ≤ i < j ≤ q such that bi − bj ∈ m, and the
proof is complete.

Theorem 5.6 follows by combining Lemma 5.8 with Lemmata 5.9 and 5.10 and
Plünnecke’s inequality as follows.

Proof of Theorem 5.6. Let

L = |G|4 |B|

q |A| |D|3 |A+B|2
∣∣∣∣A G· D

∣∣∣∣2 (log |A|)4
.
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By Lemmata 5.9 and 5.10 the set A contains a separable subset U of cardinality Ω(L),
where the implied constant is absolute. For any k ≥ 1, Lemma 5.8 implies that

|kA| ≥ |kU | � k−2kLk.

By Plünnecke’s inequality |kA| ≤ |A+B|k / |B|k−1 and hence

|A+B| � k−2L |B|1−1/k � |G|4 |B|2−1/k

qk2 |A| |D|3 |A+B|2
∣∣∣∣A G· D

∣∣∣∣2 (log |A|)4
.

The proof is completed by taking k = dlog |B|e.

5.3 An exponential sum estimate

In this section we demonstrate how our sum-product estimates can be used to give
strong estimates for exponential sums by inserting them into arguments due to Bourgain,
Glibichuk, and Konyagin in [11], where they prove a sum-product estimate for subsets of
Fp and then use it to give an upper bound for an exponential sum over Fp.

Their arguments are fairly robust and we are able to generalise them to handle
exponential sums over finite subsets of Z and Fq[t]. We also keep track of the constants to
give an explicit result. The constants in these results could certainly be slightly improved
with a little more effort.

We shall use the following strong form of the quantitative Balog-Szemerédi-Gowers
theorem, due to Schoen [65].

Lemma 5.11 (Schoen). Let G be an abelian group and A be a finite subset such that

E(A) =
∣∣∣{(a, b, c, d) ∈ A4 : a+ b = c+ d}

∣∣∣ = κ |A|3 .

There exists A′ ⊂ A such that |A′| � κ |A| and |A′ − A′| � κ−4 |A′|.

We remark that if A is a finite subset of a field F with 0 6∈ A then an identical lemma
holds, replacing additive by multiplicative energy and the difference set A′ −A′ by the
ratio set A′/A′.

We will first use Theorem 5.2 to prove the following explicit generalisation of Theorem
7 from [11].
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Theorem 5.12. Let F be a non-archimedean local field, with a residue field of size q,
equipped with the counting measure and let f, g : F → C be any functions with finite
support. For any ε > 0

∑
y 6=0

g(y)
∑

x1,x2,x3,x4
x1+yx2=x3+yx4

f(x1)f(x2)f(x3)f(x4)

�q,ε ‖f‖2
1 ‖g‖1 ‖f‖

2
2 max

(‖f‖2
‖f‖1

)2

,

(
‖f‖1
‖f‖2

)23/90+ε (‖g‖2
‖g‖1

)24/90−ε
 .

Proof. Without loss of generality we may suppose that ‖f‖1 = ‖g‖1 = 1, and by the
triangle inequality we may assume that f and g take only non-negative real values. For
this proof we will use the notation f ◦ f = f ∗ (−f). With this definition the sum to be
estimated is ∑

y 6=0
g(y)

∑
x

f ◦ f(x)f ◦ f(yx) = η ‖f‖2
2 ,

say. Using the trivial estimates ‖f ◦ f‖∞ ≤ ‖f‖
2
2 and ‖f ◦ f‖1 = 1 it follows immediately

that η ≤ 1. Furthermore, we may assume that η ≥ 2−3 ‖f‖2
2, or else the theorem follows

immediately. Let S be the set of x 6= 0 such that f ◦ f(x) ≥ 2−3η ‖f‖2
2. The strategy is to

give lower bounds for the multiplicative and additive energy of S in terms of η; combined
with Lemma 5.11 and Theorem 5.2 this will give a suitable upper bound on η.

By our assumptions we have
∑
y 6=0

g(y)
∑

x=0 or yx=0
f ◦ f(x)f ◦ f(yx) ≤ 2 ‖f‖4

2 ≤ 2−2η ‖f‖2
2 ,

and ∑
y 6=0

g(y)
∑

x 6∈S∪{0}
f ◦ f(x)f ◦ f(yx) ≤ 2−3η ‖f‖2

2

and similarly for yx 6∈ S ∪ {0}. It follows that
∑
y 6=0
|S ∩ yS| g(y) ≥ ‖f‖−4

2
∑
y 6=0

g(y)
∑
x∈S
yx∈S

f ◦ f(x)f ◦ f(yx) ≥ 2−1η ‖f‖−2
2 ,

and hence in particular |S| ≥ 2−1η ‖f‖−2
2 . Furthermore, we have

|S| ≤ 23η−1 ‖f‖−2
2
∑
x

f ◦ f(x) = 22η−1 ‖f‖−2
2 .
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Let Λ be the set of y 6= 0 such that |S ∩ yS| ≥ 2−2η ‖f‖−2
2 . Estimating as above we have

∑
y∈Λ
|S ∩ yS| g(y) ≥ 2−2η ‖f‖−2

2 .

By the pigeonhole principle there exists some Λ′ ⊂ Λ and η−1 � η′ � η such that for all
y ∈ Λ′ we have |S ∩ yS| ≈ η′ ‖f‖−2

2 and

η′ ‖f‖−2
2
∑
y∈Λ′

g(y)�
∑
y∈Λ′
|S ∩ yS| g(y)� L(η)−1η ‖f‖−2

2 .

By the Cauchy-Schwarz inequality the left hand side is bounded above by
η′ ‖f‖−2

2 |Λ|
1/2 ‖g‖2, and hence, if δ = ‖g‖−2

2 ‖f‖
2
2, then

|Λ′| �ε (η′)−2η2+εδ ‖f‖−2
2 � (η′)−2η3+εδ |S| .

It follows that

E×(S) =
∑
y

|S ∩ yS|2 � (η′)2 ‖f‖−4
2 |Λ

′| �ε η
5+εδ |S|3 .

By Lemma 5.11 there is some S ′ ⊂ S such that |S ′| � δη5+ε |S| and |S ′/S ′| �
δ−4η−20−ε |S ′|. Furthermore,

‖f‖2

 ∑
x,y∈S′

f ◦ f(x− y)
1/2

≥
∑
x∈S′

f ◦ f(x) ≥ 2−2η ‖f‖2
2 |S

′| .

It follows that if T is the set of z such that f ◦ f(z) ≥ 2−5η2 ‖f‖2
2 then

∑
x,y∈S′

1x−y∈Tf ◦ f(x− y)� ‖f‖2
2 η

2 |S ′|2 .

By the pigeonhole principle there is some T ′ ⊂ T and 1 � η′′ � η2 such that for all
z ∈ T ′′ we have f ◦ f(z) ≈ η′′ ‖f‖2

2 and
∑

x,y∈S′
1x−y∈T � (η′′)−1 ‖f‖−2

2
∑

x,y∈S′
1x−y∈Tf ◦ f(x− y)� (η′′)−1η2+ε |S ′|2 .

By the Cauchy-Schwarz inequality the left hand side is at most |T ′|1/2E+(S ′)1/2. Using
the trivial bound |T ′| � 25(η′′)−1 ‖f‖−2

2 this implies

E+(S ′)� (η′′)−1η4+ε ‖f‖2
2 |S

′|4 � δη9+ε |S ′|3 .
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Thus by Lemma 5.11 once again we have some S ′′ such that |S ′′| � δη9+ε |S ′| and

|S ′′ − S ′′| � δ−4η−36−ε |S ′′| and |S ′′/S ′′| � δ−5η−29−ε |S ′′| .

By Theorem 5.2 then we must have, for any ε > 0,

δ−22η−166 � |S ′′|1−ε �
(
δ2η14 ‖f‖−2

2

)1−ε
,

and hence η180δ24−ε �ε ‖f‖2−ε
2 as required.

We will shortly apply this estimate to exponential sums, as in [11]. Before that,
however, we take a brief detour to prove a corollary of a sum-product flavour.

Corollary 5.13. Let F be any non-archimedean local field with a residue field of size q.
Let A and B be any finite subsets of F such that 0 6∈ B. For any ε > 0 there exists some
y ∈ B such that

|A+ y · A| �q,ε |A|min
|A| ,( |B|

|A|23/24

)2/15−ε
 .

In particular, if |B| ≥ |A|203/24+ε then there exists some y ∈ B such that |A+ y · A| �q,ε

|A|2.

Proof. By the Cauchy-Schwarz inequality for any y ∈ B

|A|4 =
∑

z

∑
x1,x2∈A

1x1+yx2=z

2

≤ |A+ y · A|
∑

x1,x2,x3,x4∈A
1x1+yx2=x3+yx4 .

Summing over all y ∈ B implies that

|A|4 |B| ≤
(

max
y∈B
|A+ y · A|

)∑
y∈B

∑
x1,x2,x3,x4∈A

1x1+yx2=x3+yx4 .

Theorem 5.12 implies that, for any ε > 0,

|A|4 |B| �ε,q

(
max
y∈B
|A+ y · A|

)
|A|3 |B|max

(
|A|−1 , |A|23/180+ε |B|−24/180+ε

)
and the result follows immediately.

We now come to our estimate for exponential sums. The Fp analogue of the following
result, although not explicitly stated in [11], is implicitly proven in the course of the proof
of their Theorem 5. We follow their proof, taking care to keep track of the constants.
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Theorem 5.14. Let F be a non-archimedean local field, with residue field of cardinality
q, and let G be a subring of F . Let A ⊂ G be any finite set such that 0 6∈ A. Then for all
k ≥ 1 if r ≥ 219k then

∫
Ĝ

∣∣∣∣∣∣
∑

x1,...,xk∈A
ξ(x1 · · ·xk)

∣∣∣∣∣∣
2r

dξ �k,q |A|2rk−k
1/253

,

where the integral is taken over the dual group of the discrete additive group of G.

Thus, for example, this theorem is applicable for G = Z or G = Fq[t]. For Z, of course,
one could certainly improve the constants by using the better sum-product estimates of
Solymosi [72]. We observe that by orthogonality this integral is a count of the number of
solutions to

r∑
i=1

xi1 · · · xik =
r∑
i=1

yi1 · · · yik

with xij, yij ∈ A. In particular the integral is always a positive integer, and furthermore
we have the trivial lower bound |A|rk and the trivial upper bound |A|2rk−1.

Finally, we remark that if the strongest possible quantitative estimates were available
for both the sum-product problem and the Balog-Szemerédi-Gowers theorem then we
would be able to replace k1/253 here with k1/21; it may be the case that k1−o(1) is the
correct bound, for which it seems a different argument would be needed.

Proof. For any s ≥ 0 and r ≥ 1 let

µs(z) = |A|−2s ∑
x1,...,x2s∈A

1x1···x2s=z and fs,r = µ(r)
s ◦ µ(r)

s

and
δs,r = ‖fs,r‖2

2 =
∫
|µ̂s(ξ)|4r dξ.

We claim that δs,r decreases as either r or s increases. This is clear for increasing r since
|µ̂s(ξ)| ≤ 1, and for increasing s follows from the identity

µ̂s+1(ξ) =
∑
x,z

ξ(xz)µs(z)µs(x) (5.4)

and Hölder’s inequality. It suffices to prove that for any s ≥ 0 and r = 218(2s−1) we have
the estimate

δs,r �s,q |A|−22s/253
. (5.5)
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We shall use induction on s. We first observe that the case s = 0 follows immediately
from Parseval’s identity.

For now, we fix some s ≥ 0 and let r ≥ 1 be any integer. Let η ∈ (0, 1] be some
parameter to be chosen later, and let ∆s = ∆η(µs). By (5.4) and the triangle inequality
if ξ ∈ ∆s+1 then ∑

x

∣∣∣∣∣∑
z

ξ(xz)µs(z)
∣∣∣∣∣µs(x) ≥ η.

By Hölder’s inequality

∑
y,x

µs(x)ξ(yx)fs,r(y) =
∑
x

∣∣∣∣∣∑
z

ξ(xz)µs(z)
∣∣∣∣∣
2r

µs(x) ≥ η2r.

By Hölder’s inequality once again we have

∑
y

∣∣∣∣∣∑
x

µs(x)ξ(yx)
∣∣∣∣∣
4r

fs,r(y) ≥ η8r2
.

Integrating over all ξ ∈ ∆s+1 this implies

∑
y

fs,r(y)
∫
|µ̂s+1(ξ)|4r

∣∣∣∣∣∑
x

µs(x)ξ(yx)
∣∣∣∣∣
4r

dξ ≥ η8r2+4rm(∆s+1),

where m is the Haar measure on Ĝ, normalised so that m(Ĝ) = 1. By orthogonality
∫
|µ̂s+1(ξ)|4r

∣∣∣∣∣∑
x

µs(x)ξ(yx)
∣∣∣∣∣
4r

dξ =
∑

x1,x2,x3,x4
x1+yx2=x3+yx4

fs+1,r(x1)fs,r(x2)fs+1,r(x3)fs,r(x4),

and hence
∑
y

∑
x1,x2,x3,x4

x1+yx2=x3+yx4

fs+1,r(x1)fs,r(x2)fs+1,r(x3)fs,r(x4)fs,r(y) ≥ η8r2+4rm(∆s+1).

The contribution from y = 0 is

fs,r(0) ‖fs+1,r‖2
2 =

∥∥∥µ(r)
s

∥∥∥2

2
δs+1,r ≤ δ1/2

s,r δs+1,r ≤ δ3/2
s,r .

In particular, if f = fs+1,r + fs,r then

δ3/2
s,r +

∑
y 6=0

∑
x1,x2,x3,x4

x1+yx2=x3+yx4

f(x1)f(x2)f(x3)f(x4)fs,r(y)� η8r2+4rm(∆s+1).
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We now observe that ‖f‖2 � δ1/2
s,r and apply Theorem 5.12. It follows that

δ1+1/181
s,r � η8r2+4rm(∆s+1,η).

Furthermore, for any r′ we have

δs+1,r′ � m(∆s+1,η) + η4r′ � η−8r2−4rδ1+1/181
s,r + η4r′ .

We now choose

η−8r2−4r = δ1/182−1/181
s,r and r′ ≥ 181 · 183

4 (8r2 + 4r),

so that η4r′ ≤ δ1+1/182
s,r and hence

δs+1,r′ � δ1+1/182
s,r .

In particular, if we have (5.5) for some s ≥ 0 and r = 218(2s−1) then, if r′ = 218(2s+1−1), we
have

δs+1,r′ �
(
|A|−22s/253

)183/182
� |A|−22(s+1)/253

,

and the proof is complete.

136



BIBLIOGRAPHY

[1] M. Bateman and N. H. Katz. New bounds on cap sets. J. Amer. Math. Soc.,
25(2):585–613, 2012.

[2] F. A. Behrend. On sets of integers which contain no three terms in arithmetical
progression. Proc. Nat. Acad. Sci. U. S. A., 32:331–332, 1946.

[3] T. F. Bloom. Translation invariant equations and the method of Sanders. Bull. Lond.
Math. Soc., 44(5):1050–1067, 2012.

[4] T. F. Bloom. A quantitative improvement on Roth’s theorem on arithmetic progres-
sions. arXiv:1405.5800, 2014.

[5] T. F. Bloom and T. G. F. Jones. A sum-product estimate in function fields. Int.
Math. Res. Not. IMRN, 44(5):1050–1067, 2012.

[6] J. Bourgain. On triples in arithmetic progression. Geom. Funct. Anal., 9(5):968–984,
1999.

[7] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications.
Int. J. Number Theory, 1(1):1–32, 2005.

[8] J. Bourgain. On the construction of affine extractors. Geom. Funct. Anal., 17(1):33–57,
2007.

[9] J. Bourgain. Roth’s theorem on progressions revisited. J. Anal. Math., 104:155–192,
2008.

[10] J. Bourgain and M. Z. Garaev. On a variant of sum-product estimates and explicit
exponential sum bounds in prime fields. Math. Proc. Cambridge Philos. Soc., 146(1):1–
21, 2009.

137



[11] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin. Estimates for the number of sums
and products and for exponential sums in fields of prime order. J. London Math. Soc.
(2), 73(2):380–398, 2006.

[12] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and
applications. Geom. Funct. Anal., 14(1):27–57, 2004.

[13] M.-C. Chang. A polynomial bound in Freiman’s theorem. Duke Math. J., 113(3):399–
419, 2002.

[14] M.-C. Chang. Sum and product of different sets. Contributions to Discrete Math.,
1(1):57–67, 2006.

[15] E. Croot and D. Hart. On sums and products in C[x]. Ramanujan J., 22(1):33–54,
2010.

[16] E. Croot, I. Łaba, and O. Sisask. Arithmetic progressions in sumsets and Lp-almost-
periodicity. Combin. Probab. Comput., 22(3):351–365, 2013.

[17] E. Croot and O. Sisask. A probabilistic technique for finding almost-periods of
convolutions. Geom. Funct. Anal., 20(6):1367–1396, 2010.

[18] Y. Edel. Extensions of generalized product caps. Des. Codes Cryptogr., 31(1):5–14,
2004.

[19] M. Elkin. An improved construction of progression-free sets. Israel J. Math., 184:93–
128, 2011.

[20] P. Erdős and E. Szemerédi. On sums and products of integers. In Studies in pure
mathematics, pages 213–218. Birkhäuser, Basel, 1983.

[21] P. Erdős and P. Turán. On Some Sequences of Integers. J. London Math. Soc.,
S1-11(4):261–264, 1936.

[22] G. A. Freiman. Nachala strukturnoi teorii slozheniya mnozhestv. Kazan. Gosudarstv.
Ped. Inst., 1966.

[23] H. Furstenberg. Ergodic behaviours of diagonal measures and a theorem of Szemerédi
on arithmetic progressions. J. Analyse Math., 31:204–256, 1977.

138



[24] M. Z. Garaev. An explicit sum-product estimate in Fp. Int. Math. Res. Not. IMRN,
11:Art. ID rnm035, 2007.

[25] A. Geroldinger and I. Z. Ruzsa. Combinatorial Number Theory and Additive Group
Theory. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, 2009.

[26] W. T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal., 11(3):465–
588, 2001.

[27] B. Green. Some constructions in the inverse spectral theory of cyclic groups. Comb.
Prob. Comp., 2:127–138, 2003.

[28] B. Green. Finite field models in additive combinatorics. In Surveys in combinatorics
2005, volume 327 of London Math. Soc. Lecture Note Ser., pages 1–27. Cambridge
Univ. Press, Cambridge, 2005.

[29] B. Green and S. Konyagin. On the Littlewood problem modulo a prime. Canad. J.
Math., 61:141–164, 2009.

[30] B. Green and I. Z. Ruzsa. Freiman’s theorem in an arbitrary abelian group. J. Lond.
Math. Soc. (2), 75(1):163–175, 2007.

[31] B. Green and T. Sanders. A quantitative version of the idempotent theorem in
harmonic analysis. Ann. of Math., 168(3):1025–1054, 2008.

[32] B. Green and J. Wolf. A note on Elkin’s improvement of Behrend’s construction. In
Additive number theory, pages 141–144. Springer, New York, 2010.

[33] D. R. Heath-Brown. Integer sets containing no arithmetic progressions. J. London
Math. Soc. (2), 35(3):385–394, 1987.

[34] N. H. Katz and C.-Y. Shen. A slight improvement to Garaev’s sum product estimate.
Proc. Amer. Math. Soc., 136(7):2499–2504, 2008.

[35] S. Konyagin and I. Łaba. Distance sets of well-distributed planar sets for polygonal
norms. Israel J. Math., 152:157–179, 2006.

[36] S. V. Konyagin and M. Rudnev. On new sum-product-type estimates. SIAM J.
Discrete Math., 27(2):973–990, 2013.

139



[37] R. M. Kubota. Waring’s problem for Fq[x]. Dissertationes Math. (Rozprawy Mat.),
117:60pp., 1974.

[38] L. Li and O. Roche-Newton. An improved sum-product estimate for general finite
fields. SIAM J. Discrete Math., 25(3):1285–1296, 2011.

[39] Y.-R. Liu and C. V. Spencer. A generalization of Meshulam’s theorem on subsets of
finite abelian groups with no 3-term arithmetic progression. Des. Codes Cryptogr.,
52(1):83–91, 2009.

[40] Y.-R. Liu and C. V. Spencer. A generalization of Roth’s theorem in function fields.
Int. J. Number Theory, 5(7):1149–1154, 2009.

[41] Y.-R. Liu and T. D. Wooley. Waring’s problem in function fields. J. Reine Angew.
Math., 638:1–67, 2010.

[42] Y.-R. Liu and X. Zhao. A generalization of Roth’s theorem in function fields. Michigan
Math. J., 61(4):839–866, 2012.

[43] H. B. Mann. A proof of the fundamental theorem on the density of sets of positive
integers. Ann. Math., 43:523–527, 1942.

[44] J. Marcinkiewicz and A. Zygmund. Sur les foncions independantes. Fund. Math.,
28:60–90, 1937.

[45] R. Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progres-
sions. J. Combin. Theory Ser. A, 71(1):168–172, 1995.

[46] G. Petridis. New proofs of Plünnecke-type estimates for product sets in groups.
Combinatorica, 32(6):721–733, 2012.

[47] H. Plünnecke. Eigenschaften und Abschätzungen von Wirkungsfunktionen.
Gesellschaft für Mathematik und Datenverarbeitung, 1969.

[48] S. Prendiville. Matrix progressions in multidimensional sets of integers. available at
http://www.personal.reading.ac.uk/ pr905055/MatrixProgressions.pdf.

[49] M. Rosen. Number theory in function fields, volume 210 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2002.

140



[50] K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104–109, 1953.

[51] K. F. Roth. On certain sets of integers. II. J. London Math. Soc., 29:20–26, 1954.

[52] W. Rudin. Fourier analysis on groups. A Wiley-Interscience Publication, 1962.

[53] M. Rudnev. An improved sum-product inequality in fields of prime order. Int. Math.
Res. Not. IMRN, 16:3693–3705, 2012.

[54] I. Z. Ruzsa. An application of graph theory to additive number theory. Scientia, Ser.
A., 3:97–109, 1989.

[55] I. Z. Ruzsa. Solving a linear equation in a set of integers. I. Acta Arith., 65(3):259–282,
1993.

[56] I. Z. Ruzsa. Generalized arithmetical progressions and sumsets. Acta Math. Hungar.,
65(4):379–388, 1994.

[57] I. Z. Ruzsa. An analog of Freiman’s theorem in groups. Astérisque, 258:xv, 323–326,
1999. Structure theory of set addition.

[58] R. Salem and D. C. Spencer. On sets of integers which contain no three terms in
arithmetical progression. Proc. Nat. Acad. Sci. U. S. A., 28:561–563, 1942.

[59] T. Sanders. Appendix to: “Roth’s theorem on progressions revisited” by J. Bourgain.
J. Anal. Math., 104:193–206, 2008.

[60] T. Sanders. On Roth’s theorem on progressions. Ann. of Math. (2), 174(1):619–636,
2011.

[61] T. Sanders. On certain other sets of integers. J. Anal. Math., 116:53–82, 2012.

[62] T. Sanders. On the Bogolyubov-Ruzsa lemma. Anal. PDE, 5(3):627–655, 2012.

[63] T. Sanders. The structure theory of set addition revisited. Bull. Amer. Math. Soc.
(N.S.), 50(1):93–127, 2013.

[64] T. Schoen. Near optimal bounds in Freiman’s theorem. Duke Math. J., 158(1):1–12,
2011.

141



[65] T. Schoen. New bounds in Balog-Szemerédi-Gowers theorem. available at
www.staff.amu.edu.pl/ schoen/remark-B-S-G.pdf, 2013.

[66] T. Schoen and I. D. Shkredov. Roth’s theorem in many variables. Israel J. Math.,
199(1):287–308, 2014.

[67] I. D. Shkredov. On a generalization of Szemerédi’s theorem. Proc. London Math.
Soc., 93(3):723–760, 2006.

[68] I. D. Shkredov. Some examples of sets of large trigonometric sums. Mat. Sb.,
198(12):105–140, 2007.

[69] I. D. Shkredov. On sets of large trigonometric sums. Izv. Ros. Akad. Nauk, Ser.
Mat., 72(1):161–182, 2008.

[70] I. D. Shkredov. On sumsets of dissociated sets. Online J. Anal. Combinatorics,
4:1–27, 2009.

[71] J. Solymosi. On sum-sets and product-sets of complex numbers. J. Théor. Nombres
Bordeaux, 17(3):921–924, 2005.

[72] J. Solymosi. Bounding multiplicative energy by the sumset. Adv. Math., 222(2):402–
408, 2009.

[73] E. Szemerédi. Integer sets containing no arithmetic progressions. Acta Math. Hungar.,
56(1-2):155–158, 1990.

[74] T. Tao. The sum-product phenomenon in arbitrary rings. Contrib. Discrete Math.,
4(2):59–82, 2009.

[75] T. Tao and V. Vu. Additive combinatorics, volume 105 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2006.

[76] B. L. van der Waerden. Beweis einer baudetsche vermutung. Nieuw Arch. Wisk.,
15:212–216, 1927.

142


