Analytic Number Theory Sheet 3

Lent Term 2019

Questions 3 and 5 will be marked.

1. Assuming the Riemann hypothesis prove that

$$\psi(x) = x + O(x^{1/2 + o(1)}).$$

2. Prove that

$$\pi(x) = \operatorname{li}(x) + \Omega_{-}\left(\frac{x^{1/2}}{\log x}\right),$$

where $li(x) = \int_2^x \frac{1}{\log t} dt$. Why is establishing a Ω_+ result harder?

3. (a) Show that if $\sigma > 1 - c/\log t$ for some small constant c and $|t| \ge 7/8$ then

$$\frac{1}{\zeta(s)} \ll \log t$$

- (b) Show that if $1 c/\log t < \sigma \le 2$ and $|t| \le 7/8$ then $1/\zeta(s) \ll |s-1|$.
- (c) Show that

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0$$

(Hint: use contour integration on the function $1/\zeta(s+1)$, taking a suitable contour around s=0).

- 4. For fixed $\sigma \in \mathbb{R}$ let $\nu(\sigma)$ denote the infimum of those exponents ν such that $\zeta(\sigma + it) \ll |t|^{\nu}$ for all $|t| \ge 4$. (The unproven Lindelöf hypothesis is the statement that $\nu(1/2) = 0$.)
 - (a) What is $\nu(\sigma)$ for $\sigma \ge 1$?
 - (b) What is $\nu(\sigma)$ for $\sigma \leq 0$? (Use the functional equation.)
- 5. Let $M(x) = \sum_{n \le x} \mu(n)$. Mertens conjectured in 1897 that $|M(x)| \le x^{1/2}$ for all $x \ge 1$. This was disproved by Odlyzko and te Riele in 1984.
 - (a) Show that $M(x) = \Omega_{\pm}(x^{1/2})$.
 - (b) Show that, if $\zeta(s)$ has a multiple zero (i.e. a zero of order $m \ge 2$), then $M(x) = \Omega_{\pm}(x^{1/2} \log x)$, and hence Mertens conjecture is false (under this assumption).